Traditional methods for detecting symmetry in image suffer greatly from the contrast of image and noise, and they all require some preprocessing. This paper presents a new method of image symmetry detection. This meth...Traditional methods for detecting symmetry in image suffer greatly from the contrast of image and noise, and they all require some preprocessing. This paper presents a new method of image symmetry detection. This method detects symmetry with phase information utilizing IogGabor wavelets,because phase information is stable and significant, while symmetric points produce patterns easy to be recognised and confirmable in local phase. Phase method does not require any preprocessing, and its result is accurate or invariant to contrast, rotation and illumination conditions. This method can detect mirror symmetry, rotating symmetry and curve symmetry at one time. Results of experiment show that, compared with pivotal element algorithm based on intensity information, phase method is more accurate and robust.展开更多
vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetatio...vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetation Index (NDVI) was calculated as an indicator of vegetation greenness using Chinese Environmental Disaster Reduction Satellite images along latitudinal and longitudinal transects. Four scales of variations were identified from the local wavelet spectrum of NDVI, with much stronger wavelet variances observed at larger scales. The characteristic scale of vegetation distribution within mountainous and hilly regions in Southeast China was around 20 km. Significantly strong wavelet coherency was generally examined in regions with very diverse topography, typically characterized as small mountains and hills fractured by rivers and residents. The continuous wavelet based approaches provided valuable insight on the hierarchical structure and its corresponding characteristic scales of ecosystems, which might be applied in defining proper levels in multilevel models and optimal bandwidths in Geographically Weighted Regression.展开更多
Current phase comparison based pilot protection had been generally utilized as primary protection of the transmission lines in China from the 1950's to the 1980' s, Comentional phase comparison pilot protection has ...Current phase comparison based pilot protection had been generally utilized as primary protection of the transmission lines in China from the 1950's to the 1980' s, Comentional phase comparison pilot protection has a long phase comparison time, which results in a longer fault-clearing time. This paper proposes a new current phase comparison, pilot protection scheme that is based on non-power frequency fauh eun'ent component. The phase of the fourth harmonic eun'ent of each end of the protected line has heen abstracted hy utilizing complex wavelet transformation and then compared in order to determine whether the inner fauh occurs or not. This way can greatly deerease fauh-elearing time and improve performances of this pilot protection when fault occurs under the heavy-load current and asymmetrical operation eonditions, Many EMTP simulations have verified the proposed scheme's correctness and effectiveness.展开更多
The High Molecular Weight HMW-GS and Low-Molecular-Weight LMW-GS Glutenin Subunits are major determinants of wheat dough processing qualities. Tilling populations was generated by EMS mutagenesis from Chaml durum vari...The High Molecular Weight HMW-GS and Low-Molecular-Weight LMW-GS Glutenin Subunits are major determinants of wheat dough processing qualities. Tilling populations was generated by EMS mutagenesis from Chaml durum variety. Protein quality was investigated by SDS sedimentation, protein content, gluten content and thousand kernel weights. 21 mutants were selected from 1,500 lines of tilling population depending on the variations of their electrophoresis profiles. The analysis of Glu-B 1 HMW-GS has showed two types of profiles: lines deficient on Bx7 and lines with expression of new protein between (Bx7-ByS) allelic pair combination. The majority of these mutant lines have showed quality compounds associated with bad technological characteristics like the parent Cham l with the exception of two mutant lines expressing new protein that have significantly stronger gluten properties an one mutant deficient on Bx7 HMW-GS that developed high value of SDS. For Glu-B3 LMW-GS coding for LMW glutenin type 1 and 2, new mutant line showing expression of new protein pattern. The mutant showing over-expression of bands on gel SDS-PAGE for LMW typel like Chaml, have produced the highest protein and gluten content, while the new mutant showing new profile have showed high value of Gluten and SDS.展开更多
This paper presents an analytical study of the complete transform of improved Gabor wavelets (IGWs), and discusses its application to the processing and interpretation of seismic signals. The complete Gabor wavelet ...This paper presents an analytical study of the complete transform of improved Gabor wavelets (IGWs), and discusses its application to the processing and interpretation of seismic signals. The complete Gabor wavelet transform has the following properties. First, unlike the conventional transform, the improved Gabor wavelet transform (IGWT) maps time domain signals to the time-frequency domain instead of the time-scale domain. Second, the IGW's dominant frequency is fixed, so the transform can perform signal frequency division, where the dominant frequency components of the extracted sub-band signal carry essentially the same information as the corresponding components of the original signal, and the sub- band signal bandwidth can be regulated effectively by the transform's resolution factor. Third, a time-frequency filter consisting of an IGWT and its inverse transform can accurately locate target areas in the time-frequency field and perform filtering in a given time-frequency range. The complete IGW transform's properties are investigated using simulation experiments and test cases, showing positive results for seismic signal processing and interpretation, such as enhancing seismic signal resolution, permitting signal frequency division, and allowing small faults to be identified.展开更多
文摘Traditional methods for detecting symmetry in image suffer greatly from the contrast of image and noise, and they all require some preprocessing. This paper presents a new method of image symmetry detection. This method detects symmetry with phase information utilizing IogGabor wavelets,because phase information is stable and significant, while symmetric points produce patterns easy to be recognised and confirmable in local phase. Phase method does not require any preprocessing, and its result is accurate or invariant to contrast, rotation and illumination conditions. This method can detect mirror symmetry, rotating symmetry and curve symmetry at one time. Results of experiment show that, compared with pivotal element algorithm based on intensity information, phase method is more accurate and robust.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.41071267)Scientific Research Foundation for Returned Scholars,Ministry of Education of China(Grant No.[2012]940)the Science & Technology Department of Fujian Province,China(Grant Nos.2012I0005,2012J01167)
文摘vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetation Index (NDVI) was calculated as an indicator of vegetation greenness using Chinese Environmental Disaster Reduction Satellite images along latitudinal and longitudinal transects. Four scales of variations were identified from the local wavelet spectrum of NDVI, with much stronger wavelet variances observed at larger scales. The characteristic scale of vegetation distribution within mountainous and hilly regions in Southeast China was around 20 km. Significantly strong wavelet coherency was generally examined in regions with very diverse topography, typically characterized as small mountains and hills fractured by rivers and residents. The continuous wavelet based approaches provided valuable insight on the hierarchical structure and its corresponding characteristic scales of ecosystems, which might be applied in defining proper levels in multilevel models and optimal bandwidths in Geographically Weighted Regression.
基金Sponsored by the Power Electrical Science and Technology Foundation of XJ Group and the Shanghai University Foundation for Excellent Young Teacher.
文摘Current phase comparison based pilot protection had been generally utilized as primary protection of the transmission lines in China from the 1950's to the 1980' s, Comentional phase comparison pilot protection has a long phase comparison time, which results in a longer fault-clearing time. This paper proposes a new current phase comparison, pilot protection scheme that is based on non-power frequency fauh eun'ent component. The phase of the fourth harmonic eun'ent of each end of the protected line has heen abstracted hy utilizing complex wavelet transformation and then compared in order to determine whether the inner fauh occurs or not. This way can greatly deerease fauh-elearing time and improve performances of this pilot protection when fault occurs under the heavy-load current and asymmetrical operation eonditions, Many EMTP simulations have verified the proposed scheme's correctness and effectiveness.
文摘The High Molecular Weight HMW-GS and Low-Molecular-Weight LMW-GS Glutenin Subunits are major determinants of wheat dough processing qualities. Tilling populations was generated by EMS mutagenesis from Chaml durum variety. Protein quality was investigated by SDS sedimentation, protein content, gluten content and thousand kernel weights. 21 mutants were selected from 1,500 lines of tilling population depending on the variations of their electrophoresis profiles. The analysis of Glu-B 1 HMW-GS has showed two types of profiles: lines deficient on Bx7 and lines with expression of new protein between (Bx7-ByS) allelic pair combination. The majority of these mutant lines have showed quality compounds associated with bad technological characteristics like the parent Cham l with the exception of two mutant lines expressing new protein that have significantly stronger gluten properties an one mutant deficient on Bx7 HMW-GS that developed high value of SDS. For Glu-B3 LMW-GS coding for LMW glutenin type 1 and 2, new mutant line showing expression of new protein pattern. The mutant showing over-expression of bands on gel SDS-PAGE for LMW typel like Chaml, have produced the highest protein and gluten content, while the new mutant showing new profile have showed high value of Gluten and SDS.
基金supported by the Innovation Fund for Small and Medium Technology-based Enterprise of China(No.12C26216106562)Shaanxi Province Education Department Science and Technology Research Plan(No.11JK0777)
文摘This paper presents an analytical study of the complete transform of improved Gabor wavelets (IGWs), and discusses its application to the processing and interpretation of seismic signals. The complete Gabor wavelet transform has the following properties. First, unlike the conventional transform, the improved Gabor wavelet transform (IGWT) maps time domain signals to the time-frequency domain instead of the time-scale domain. Second, the IGW's dominant frequency is fixed, so the transform can perform signal frequency division, where the dominant frequency components of the extracted sub-band signal carry essentially the same information as the corresponding components of the original signal, and the sub- band signal bandwidth can be regulated effectively by the transform's resolution factor. Third, a time-frequency filter consisting of an IGWT and its inverse transform can accurately locate target areas in the time-frequency field and perform filtering in a given time-frequency range. The complete IGW transform's properties are investigated using simulation experiments and test cases, showing positive results for seismic signal processing and interpretation, such as enhancing seismic signal resolution, permitting signal frequency division, and allowing small faults to be identified.