The effects of leaf water status in a wheat canopy on the accuracy of estimating leaf area index (LAI) and N were determined in this study using extracted spectral characteristics in the 2 000-2 300 nm region of the s...The effects of leaf water status in a wheat canopy on the accuracy of estimating leaf area index (LAI) and N were determined in this study using extracted spectral characteristics in the 2 000-2 300 nm region of the short wave infrared (SWI) band. A newly defined spectral index, relative adsorptive index in the 2000-2300 nm region (RAI2000-2300), which can be calculated by RAI2000-2300 = (R2224 - R2054) (R2224 + R2054)-1 with R being the reflectance at 2224 or 2054 nm, was utilized. This spectral index, RAI2000-2300, was significantly correlated (P < 0.01) with green LAI and leaf N concentration and proved to be potentially valuable for monitoring plant green LAI and leaf N at the field canopy scale. Moreover, plant LAI could be monitored more easily and more successfully than plant leaf N. The study also showed that leaf water had a strong masking effect on the 2 000-2 300 nm spectral characteristics and both the coefficient between RAI2000-2300 and green LAI and that between RAI2000-2300 and leaf N content decreased as leaf water content increased.展开更多
Evapotranspiration (ETc) is an important quantity for hydrological cycle. This study shows evapotranspiration, the ratio of evaporation to evapotranspiration (E/ETc) of winter wheat and maize in north China. Sever...Evapotranspiration (ETc) is an important quantity for hydrological cycle. This study shows evapotranspiration, the ratio of evaporation to evapotranspiration (E/ETc) of winter wheat and maize in north China. Several relationships, namely, E/ET0 and soil surface moisture, E/ET0 and leaf area index (LAI), are also analyzed. The average seasonal ETc values for winter wheat, maize (2008) and maize (2009) are 431.21,456.3 and 341.4mm. The value of E/ET0 varied from 1 at initial growth stage to 0.295 at the later growth for winter wheat, and from 1 to 0.492, from 1 to 0.566 for maize (2008) and maize (2009). The relationship between E/ET0 and surface soil water content, and E/ET0 and LAI are fitted to a quadratic parabola equation with significant correlation coefficients, respectively, for wheat and maize. These results should help the precise planning and efficient management of irrigation for these crops in this region.展开更多
基金Project supported by the National High Technology Research and Development Program of China (863 Program)(No. 2002AA243011)the National Key Basic Research Support Foundation of China (No. G2000077907)
文摘The effects of leaf water status in a wheat canopy on the accuracy of estimating leaf area index (LAI) and N were determined in this study using extracted spectral characteristics in the 2 000-2 300 nm region of the short wave infrared (SWI) band. A newly defined spectral index, relative adsorptive index in the 2000-2300 nm region (RAI2000-2300), which can be calculated by RAI2000-2300 = (R2224 - R2054) (R2224 + R2054)-1 with R being the reflectance at 2224 or 2054 nm, was utilized. This spectral index, RAI2000-2300, was significantly correlated (P < 0.01) with green LAI and leaf N concentration and proved to be potentially valuable for monitoring plant green LAI and leaf N at the field canopy scale. Moreover, plant LAI could be monitored more easily and more successfully than plant leaf N. The study also showed that leaf water had a strong masking effect on the 2 000-2 300 nm spectral characteristics and both the coefficient between RAI2000-2300 and green LAI and that between RAI2000-2300 and leaf N content decreased as leaf water content increased.
文摘Evapotranspiration (ETc) is an important quantity for hydrological cycle. This study shows evapotranspiration, the ratio of evaporation to evapotranspiration (E/ETc) of winter wheat and maize in north China. Several relationships, namely, E/ET0 and soil surface moisture, E/ET0 and leaf area index (LAI), are also analyzed. The average seasonal ETc values for winter wheat, maize (2008) and maize (2009) are 431.21,456.3 and 341.4mm. The value of E/ET0 varied from 1 at initial growth stage to 0.295 at the later growth for winter wheat, and from 1 to 0.492, from 1 to 0.566 for maize (2008) and maize (2009). The relationship between E/ET0 and surface soil water content, and E/ET0 and LAI are fitted to a quadratic parabola equation with significant correlation coefficients, respectively, for wheat and maize. These results should help the precise planning and efficient management of irrigation for these crops in this region.