For comprehensive characteristics of flow in a gas bearing,lattice Boltzmann method(LBM)is applied for study of the two-dimensional flow between two eccentric cylinders with the inner one rotating at a high speed.The ...For comprehensive characteristics of flow in a gas bearing,lattice Boltzmann method(LBM)is applied for study of the two-dimensional flow between two eccentric cylinders with the inner one rotating at a high speed.The flow pattern and circumferential pressure distribution are discussed based on critical issues such as eccentricity ranging from 0.2 to 0.9,clearance ratio varying from 0.005 to 0.01 and rotating speed in the range of 3×104—1.8×105 r/min.The analysis and discussion on the circumferential pressure distribution affirmed the quasilinear relation between the extremum pressure and rotating speed.Furthermore,a high eccentricity and small clearance ratio contributes most to the fluctuation of the circumferential pressure distribution.The flow pattern inside the channel exhibits separation vortex under a large eccentricity.The conclusions drawn in this work give rise to prediction of the flow pattern in the gas bearing which is beneficial for evaluating the performance of as well as instructing the design and development.展开更多
Over the past decade, wavelets provided a powerful and flexible set of tools for handling fundamental problems in science and engineering. Wavelet analyses are being used for solving problems in different engineering ...Over the past decade, wavelets provided a powerful and flexible set of tools for handling fundamental problems in science and engineering. Wavelet analyses are being used for solving problems in different engineering areas like audio de-noising, signal compression, object detection, image decomposition, speech recognition etc. Wavelet analysis employs orthonormal as well as non-orthonornal functions. This research investigates the effectiveness of wavelet analysis in detecting defects in underground steel pipe networks. Continuous Wavelet Transforms (CWT) has been performed on the received signals of cylindrical guided waves. Cylindrical Guided waves are generated and propagated through the pipe wall boundaries in a pitch-catch system. Piezo-electric transducers are used to generate as well as receive guided waves. Several mother wavelet functions such as Daubechies, Symlet, Coiflet and Meyer have been used for the Continuous Wavelet Transform to investigate the most suitable function for defect detection. This research also investigates the effect of surrounding soil on wavelet transforms for different mother wavelet functions.展开更多
Based on constructal theory and entransy theory,the optimal designs of constant-and variable-cross-sectional cylindrical heat sources are carried out by taking dimensionless equivalent resistance minimization as optim...Based on constructal theory and entransy theory,the optimal designs of constant-and variable-cross-sectional cylindrical heat sources are carried out by taking dimensionless equivalent resistance minimization as optimization objective.The effects of the cylindrical height,the cylindrical shape and the ratio of thermal conductivity of the fin to that of the heat source are analyzed.The results show that when the volume of the heat source is fixed,there exists an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius which leads to the minimum dimensionless equivalent thermal resistance.With the increase in the height of the cylindrical heat source and the ratio of thermal conductivity,the minimum dimensionless equivalent thermal resistance decreases gradually.For the heat source model with inverted variable-cross-sectional cylinder,there exist an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius and an optimal radius ratio of the smaller and bigger circles of the cylindrical fin which lead to a double minimum dimensionless equivalent thermal resistance.Therefore,the heat transfer performance of the cylindrical heat source is improved by adopting the cylindrical model with variable-cross-section.The optimal constructs of the cylindrical heat source based on the minimizations of dimensionless maximum thermal resistance and dimensionless equivalent thermal resistance are different.When the thermal security is ensured,the optimal construct of the cylindrical heat source based on minimum equivalent thermal resistance can provide a new alternative scheme for the practical design of heat source.The results obtained herein enrich the work of constructal theory and entransy theory in the optimal design field of the heat sources,and they can provide some guidelines for the designs of practical heat source systems.展开更多
Umbrella-shaped assembly of cylindrical fins is optimized by adopting analytical method and taking dimensionless mean thermal resistance (MTR) as performance index. The optimal construct of umbrella-shaped assembly is...Umbrella-shaped assembly of cylindrical fins is optimized by adopting analytical method and taking dimensionless mean thermal resistance (MTR) as performance index. The optimal construct of umbrella-shaped assembly is obtained. The results show that the heat conductance performance of the assembly becomes ever worse with ever greater number of elemental cylindrical fins,the umbrella-shaped assembly reduces to cylindrical fin in some values of design parameters,and the diameters’ dependence on design parameters is weak for the optimized assembly. An equivalent thermal resistance defined based on entransy dissipation rate (EDR) reflects an average heat transfer effect of the assembly. The constructal design corresponding to the minimum EDR (or MTR) should be adopted for designing an assembly of fins in engineering at the limit safe condition.展开更多
基金partially supported by the Aeronautical Science Foundation of China (No.201928052008)
文摘For comprehensive characteristics of flow in a gas bearing,lattice Boltzmann method(LBM)is applied for study of the two-dimensional flow between two eccentric cylinders with the inner one rotating at a high speed.The flow pattern and circumferential pressure distribution are discussed based on critical issues such as eccentricity ranging from 0.2 to 0.9,clearance ratio varying from 0.005 to 0.01 and rotating speed in the range of 3×104—1.8×105 r/min.The analysis and discussion on the circumferential pressure distribution affirmed the quasilinear relation between the extremum pressure and rotating speed.Furthermore,a high eccentricity and small clearance ratio contributes most to the fluctuation of the circumferential pressure distribution.The flow pattern inside the channel exhibits separation vortex under a large eccentricity.The conclusions drawn in this work give rise to prediction of the flow pattern in the gas bearing which is beneficial for evaluating the performance of as well as instructing the design and development.
文摘Over the past decade, wavelets provided a powerful and flexible set of tools for handling fundamental problems in science and engineering. Wavelet analyses are being used for solving problems in different engineering areas like audio de-noising, signal compression, object detection, image decomposition, speech recognition etc. Wavelet analysis employs orthonormal as well as non-orthonornal functions. This research investigates the effectiveness of wavelet analysis in detecting defects in underground steel pipe networks. Continuous Wavelet Transforms (CWT) has been performed on the received signals of cylindrical guided waves. Cylindrical Guided waves are generated and propagated through the pipe wall boundaries in a pitch-catch system. Piezo-electric transducers are used to generate as well as receive guided waves. Several mother wavelet functions such as Daubechies, Symlet, Coiflet and Meyer have been used for the Continuous Wavelet Transform to investigate the most suitable function for defect detection. This research also investigates the effect of surrounding soil on wavelet transforms for different mother wavelet functions.
基金supported by the National Natural Science Foundation of China(Grant Nos.5120618451176203&51356001)
文摘Based on constructal theory and entransy theory,the optimal designs of constant-and variable-cross-sectional cylindrical heat sources are carried out by taking dimensionless equivalent resistance minimization as optimization objective.The effects of the cylindrical height,the cylindrical shape and the ratio of thermal conductivity of the fin to that of the heat source are analyzed.The results show that when the volume of the heat source is fixed,there exists an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius which leads to the minimum dimensionless equivalent thermal resistance.With the increase in the height of the cylindrical heat source and the ratio of thermal conductivity,the minimum dimensionless equivalent thermal resistance decreases gradually.For the heat source model with inverted variable-cross-sectional cylinder,there exist an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius and an optimal radius ratio of the smaller and bigger circles of the cylindrical fin which lead to a double minimum dimensionless equivalent thermal resistance.Therefore,the heat transfer performance of the cylindrical heat source is improved by adopting the cylindrical model with variable-cross-section.The optimal constructs of the cylindrical heat source based on the minimizations of dimensionless maximum thermal resistance and dimensionless equivalent thermal resistance are different.When the thermal security is ensured,the optimal construct of the cylindrical heat source based on minimum equivalent thermal resistance can provide a new alternative scheme for the practical design of heat source.The results obtained herein enrich the work of constructal theory and entransy theory in the optimal design field of the heat sources,and they can provide some guidelines for the designs of practical heat source systems.
基金supported by the National Natural Science Foundation of China (Grant No.10905093)the Program for New Century Excellent Talents in University of China (Grant No.NCET-04-1006)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No.200136)
文摘Umbrella-shaped assembly of cylindrical fins is optimized by adopting analytical method and taking dimensionless mean thermal resistance (MTR) as performance index. The optimal construct of umbrella-shaped assembly is obtained. The results show that the heat conductance performance of the assembly becomes ever worse with ever greater number of elemental cylindrical fins,the umbrella-shaped assembly reduces to cylindrical fin in some values of design parameters,and the diameters’ dependence on design parameters is weak for the optimized assembly. An equivalent thermal resistance defined based on entransy dissipation rate (EDR) reflects an average heat transfer effect of the assembly. The constructal design corresponding to the minimum EDR (or MTR) should be adopted for designing an assembly of fins in engineering at the limit safe condition.