The current research of the aerostatic thrust bearing mainly focuses on the porous material bearing and inherent compensated air bearing, which aims at obtaining small physical dimension and large load capacity. Altho...The current research of the aerostatic thrust bearing mainly focuses on the porous material bearing and inherent compensated air bearing, which aims at obtaining small physical dimension and large load capacity. Although porous material bearing appears larger load capacity, materials anisotropy itself and void content distortion caused in heat-treating, and machining processes add greater complexity to internal flow transfer process. Inherent compensated air bearing has the advantages of simple structure and good stability, but its load capacity and static stiffness is not worth somewhat. In this paper, based on hydrostatic lubrication theory, finite volume method is presented for taking entrance effects into account in computing pressure distribution, load capacity and mass flow rates of circular aerostatic thrust bearings. Technical analysis, numerical simulations and laboratory demonstration tests of influence of pocket diameter and pocket depth on loading capacity of aerostatic thrust bearing are carried out on simple orifice compensated air bearings with feeding pockets. The static parameters, such as air consumption and pressure distributions, are measured as a function of supply pressure and air gap height for several different orifices and pockets size. Entrance effects are described in term of typical throttling types, and the effect of pocket diameter and pocket depth on load capacity is systematically described respectively. The proposed research results uncover the causation of throttling action of the orifice compensated air bearing with feed pocket and further develop and improve the design theory of air bearing.展开更多
It has been suggested that microcracks do play a key role in the triggering of the bone remodeling process.In order to evaluate the influence of microcracks on the poroelastic behaviors of an osteon,a finite element m...It has been suggested that microcracks do play a key role in the triggering of the bone remodeling process.In order to evaluate the influence of microcracks on the poroelastic behaviors of an osteon,a finite element model is established and investigated by using the Comsol Multiphysics software.The findings show that the presence of a microcrack in the osteon wall strongly modifies(enlarges)its local fluid pressure and velocity.Especially,the pressure and velocity amplitudes produced in the microcracked region are larger than those of the non-cracked region.Thus,this study can also be used for proposing a likely mechanism that bone can sense the changes of surrounding mechanical environments.展开更多
Mechanosensors are the most important organelles for osteocytes to perceive the changes of surrounding mechanical environment.To evaluate the biomechanical effectiveness of collagen hillock,cell process and primary...Mechanosensors are the most important organelles for osteocytes to perceive the changes of surrounding mechanical environment.To evaluate the biomechanical effectiveness of collagen hillock,cell process and primary·cilium in lacunar-canalicular system(LCS),we developed pressure-electricity-structure interaction models by using the COMSOL Multiphysics software to characterize the deformation of collagen hillocks-and primary cilium-based mechanosensors in osteocyte under fluid flow and electric field stimulation.And mechanical signals(pore pressure,fluid velocity,stress,deformation)were analyzed in LCS.The effects of changes in the elastic modulus of collagen hillocks,the number and location of cell processes,the length and location of primary cilia on the mechanosensitivity and the overall poroelastic responses of osteocytes were studied.These models predict that the presence of primary cilium and collagen hillocks resulted in significant stress amplifications(one and two orders of magnitude larger than osteocyte body)on the osteocyte.The growth of cell process along the long axis could stimulate osteocyte to a higher level than along the short axis.The Mises stress of the basal body of primary cilia near the top of osteocyte is 8 Pa greater than that near the bottom.However,the presence of collagen hillocks and primary cilium does not affect the mechanical signal of the whole osteocyte body.The established model can be used for studying the mechanism of bone mechanotransduction at the multiscale level.展开更多
基金supported by Basic Scientific Research Project of National Natural Science Foundation of China (Grant No. k1402040202)
文摘The current research of the aerostatic thrust bearing mainly focuses on the porous material bearing and inherent compensated air bearing, which aims at obtaining small physical dimension and large load capacity. Although porous material bearing appears larger load capacity, materials anisotropy itself and void content distortion caused in heat-treating, and machining processes add greater complexity to internal flow transfer process. Inherent compensated air bearing has the advantages of simple structure and good stability, but its load capacity and static stiffness is not worth somewhat. In this paper, based on hydrostatic lubrication theory, finite volume method is presented for taking entrance effects into account in computing pressure distribution, load capacity and mass flow rates of circular aerostatic thrust bearings. Technical analysis, numerical simulations and laboratory demonstration tests of influence of pocket diameter and pocket depth on loading capacity of aerostatic thrust bearing are carried out on simple orifice compensated air bearings with feeding pockets. The static parameters, such as air consumption and pressure distributions, are measured as a function of supply pressure and air gap height for several different orifices and pockets size. Entrance effects are described in term of typical throttling types, and the effect of pocket diameter and pocket depth on load capacity is systematically described respectively. The proposed research results uncover the causation of throttling action of the orifice compensated air bearing with feed pocket and further develop and improve the design theory of air bearing.
基金supported by the program for the OIT of Higher Learning Institutions of Shanxi,the National Natural Science Foundation of China(Grant Nos.11302143 and 11472185)the Natural Science Foundation of Shanxi(Grant No.2014021013)
文摘It has been suggested that microcracks do play a key role in the triggering of the bone remodeling process.In order to evaluate the influence of microcracks on the poroelastic behaviors of an osteon,a finite element model is established and investigated by using the Comsol Multiphysics software.The findings show that the presence of a microcrack in the osteon wall strongly modifies(enlarges)its local fluid pressure and velocity.Especially,the pressure and velocity amplitudes produced in the microcracked region are larger than those of the non-cracked region.Thus,this study can also be used for proposing a likely mechanism that bone can sense the changes of surrounding mechanical environments.
基金supported by the National Natural Science Foundation of China(Grant Nos.11972242,11632013,11702183)China Postdoctoral Science Foundation(Grant No.2020M680913).
文摘Mechanosensors are the most important organelles for osteocytes to perceive the changes of surrounding mechanical environment.To evaluate the biomechanical effectiveness of collagen hillock,cell process and primary·cilium in lacunar-canalicular system(LCS),we developed pressure-electricity-structure interaction models by using the COMSOL Multiphysics software to characterize the deformation of collagen hillocks-and primary cilium-based mechanosensors in osteocyte under fluid flow and electric field stimulation.And mechanical signals(pore pressure,fluid velocity,stress,deformation)were analyzed in LCS.The effects of changes in the elastic modulus of collagen hillocks,the number and location of cell processes,the length and location of primary cilia on the mechanosensitivity and the overall poroelastic responses of osteocytes were studied.These models predict that the presence of primary cilium and collagen hillocks resulted in significant stress amplifications(one and two orders of magnitude larger than osteocyte body)on the osteocyte.The growth of cell process along the long axis could stimulate osteocyte to a higher level than along the short axis.The Mises stress of the basal body of primary cilia near the top of osteocyte is 8 Pa greater than that near the bottom.However,the presence of collagen hillocks and primary cilium does not affect the mechanical signal of the whole osteocyte body.The established model can be used for studying the mechanism of bone mechanotransduction at the multiscale level.