We report on the preparation and superconductivity of metastable γ-Ga islands on Si(111) substrate. The Ga grows in a typical Volmer-Weber mode at a low temperature of 110 K, resulting in formation of Ga nanoislands ...We report on the preparation and superconductivity of metastable γ-Ga islands on Si(111) substrate. The Ga grows in a typical Volmer-Weber mode at a low temperature of 110 K, resulting in formation of Ga nanoislands at various sizes with the identical γ-phase. In-situ low temperature scanning tunneling spectra reveal quantized electronic states in ultrathin Ga islands. It is found that both the lateral size and thickness of the Ga islands strongly suppress the superconductivity. Due to substantial surface energy contribution, the transition temperature Tc scales inversely with the island thickness and the minimum thickness for the occurrence of superconductivity is calculated to be two monolayers.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11374336)
文摘We report on the preparation and superconductivity of metastable γ-Ga islands on Si(111) substrate. The Ga grows in a typical Volmer-Weber mode at a low temperature of 110 K, resulting in formation of Ga nanoislands at various sizes with the identical γ-phase. In-situ low temperature scanning tunneling spectra reveal quantized electronic states in ultrathin Ga islands. It is found that both the lateral size and thickness of the Ga islands strongly suppress the superconductivity. Due to substantial surface energy contribution, the transition temperature Tc scales inversely with the island thickness and the minimum thickness for the occurrence of superconductivity is calculated to be two monolayers.