期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于边缘的双路卷积神经网络及其可视化
被引量:
4
1
作者
李雨冲
闫昭帆
严国萍
《计算机工程与科学》
CSCD
北大核心
2019年第10期1837-1845,共9页
为提高小尺度复杂图像识别准确率,通过对LeNet-5卷积神经网络并入一个新通道,让其处理与边缘有关的信息。结合两种通道产生的不同特征构造分类器,提出一种基于边缘的双路卷积神经网络,对小尺度复杂数据集进行识别。在包含10类产品数据...
为提高小尺度复杂图像识别准确率,通过对LeNet-5卷积神经网络并入一个新通道,让其处理与边缘有关的信息。结合两种通道产生的不同特征构造分类器,提出一种基于边缘的双路卷积神经网络,对小尺度复杂数据集进行识别。在包含10类产品数据上分类的结果表明,双路卷积神经网络的识别准确率远高于传统网络。最后通过神经网络可视化算法对双路卷积神经网络进行了可视化分析。
展开更多
关键词
图像
模式识别
双路卷积神经网络
小尺度复杂图像
神经网络可视化
下载PDF
职称材料
题名
基于边缘的双路卷积神经网络及其可视化
被引量:
4
1
作者
李雨冲
闫昭帆
严国萍
机构
长安大学信息工程学院
出处
《计算机工程与科学》
CSCD
北大核心
2019年第10期1837-1845,共9页
基金
“弘毅长大”研究生科研创新实践项目(2018103,2018109)
文摘
为提高小尺度复杂图像识别准确率,通过对LeNet-5卷积神经网络并入一个新通道,让其处理与边缘有关的信息。结合两种通道产生的不同特征构造分类器,提出一种基于边缘的双路卷积神经网络,对小尺度复杂数据集进行识别。在包含10类产品数据上分类的结果表明,双路卷积神经网络的识别准确率远高于传统网络。最后通过神经网络可视化算法对双路卷积神经网络进行了可视化分析。
关键词
图像
模式识别
双路卷积神经网络
小尺度复杂图像
神经网络可视化
Keywords
image pattern recognition
2-channel convolutional neural network
small-scale complex image
neural network visualization
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于边缘的双路卷积神经网络及其可视化
李雨冲
闫昭帆
严国萍
《计算机工程与科学》
CSCD
北大核心
2019
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部