期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种小尺度目标检测卷积神经网络设计 被引量:1
1
作者 丛龙剑 刘燕欣 +4 位作者 靳松直 郝梦茜 刘严羊硕 周斌 张辉 《西北工业大学学报》 EI CAS CSCD 北大核心 2020年第S01期146-153,共8页
航天装备的智能感知技术受距离与探测手段的制约,面临着检测目标尺度小的问题,深度卷积神经网络是目前目标检测的主要技术手段,但小尺度目标在卷积神经网络前向计算过程中,由于多次下采样的网络结构会损失较多的特征信息而不利于目标检... 航天装备的智能感知技术受距离与探测手段的制约,面临着检测目标尺度小的问题,深度卷积神经网络是目前目标检测的主要技术手段,但小尺度目标在卷积神经网络前向计算过程中,由于多次下采样的网络结构会损失较多的特征信息而不利于目标检测。特征金字塔网络(feature pyramid network,FPN)是一种广泛应用于小尺度目标检测的网络设计,采用主干网络低层特征与高层特征上采样相融合的方式。提出将特征图放大尺寸的网络设计方法,并对网络分离提升主干网络低/高层特征图与小/大尺度目标的匹配度,设计了一种特征漏斗网络(feature funnel networks,FFN)。经实验验证,特征漏斗网络相较于同级别网络在小尺度目标数据集VisDrone中获得了更高的检测精度与召回率而不损失过多的速度。 展开更多
关键词 智能感知 卷积神经网络 小尺度目标检测
下载PDF
基于改进无锚框网络的小尺度车辆目标检测方法 被引量:1
2
作者 刘腾 刘宏哲 +1 位作者 李学伟 徐成 《计算机工程与设计》 北大核心 2022年第10期2799-2804,共6页
小尺度车辆目标检测现已成为交通场景下目标检测中亟待解决的难题。对其中的难点进行研究,提出一种基于无锚框目标检测网络改进的算法。使用自适应特征提取方法,增强小尺度特征的表达,提高小尺度目标的特征提取能力;通过改进特征融合方... 小尺度车辆目标检测现已成为交通场景下目标检测中亟待解决的难题。对其中的难点进行研究,提出一种基于无锚框目标检测网络改进的算法。使用自适应特征提取方法,增强小尺度特征的表达,提高小尺度目标的特征提取能力;通过改进特征融合方法,将浅层信息逐层融合,解决特征丢失的问题。引入注意力增强方法,增加中心点预测能力,解决目标遮挡问题。实验结果表明,该算法在UA-DETRAC数据集上有很好的检测效果,较改进前车辆检测能力有较大提升,满足实时检测的要求,检测速度达到了59,平均精度均值为92.9%。 展开更多
关键词 小尺度车辆目标检测 无锚框目标检测 智慧交通 深度学习 注意力机制
下载PDF
结合跨层特征融合与级联检测器的防震锤缺陷检测
3
作者 梁华刚 赵慧霞 +2 位作者 刘丽华 岳鹏 郑振宇 《中国图象图形学报》 CSCD 北大核心 2023年第11期3485-3496,共12页
目的防震锤可以减少输电线路的周期性震动以降低线路的疲劳损害,定期对防震锤进行巡检非常必要。针对目前无人机巡检输电线路所得航拍图像背景复杂,而种类较多、形状各异以及特性不一的防震锤在航拍图像中占据像素面积很小,导致防震锤... 目的防震锤可以减少输电线路的周期性震动以降低线路的疲劳损害,定期对防震锤进行巡检非常必要。针对目前无人机巡检输电线路所得航拍图像背景复杂,而种类较多、形状各异以及特性不一的防震锤在航拍图像中占据像素面积很小,导致防震锤检测过程中出现的检测精度低、无法确定缺陷类型等问题,提出了一种结合跨层特征融合和级联检测器的防震锤缺陷检测方法。方法本文使用无人机对防震锤部件巡检的航拍图像进行数据扩充建立防震锤缺陷检测数据集,并划分了4种缺陷类型,为研究提供了数据基础。首先,以VGG16(Visual Geometry Group 16-layer network)为基础对1、3、5层特征进行特征融合得到特征图,平衡了语义信息和空间特征;其次,使用3个级联检测器对目标进行分类定位,减小了交并比(intersection over union,IoU)阈值对网络性能的影响;最后,将非极大值抑制法替换为Soft-NMS(soft non-maximum suppression)算法,去除边界框保留了最佳结果。结果在自建数据集上验证网络模型对4种防震锤缺陷类型的检测效果,与现有基于深度学习的其他6种先进算法相比,本文算法的平均准确率比Fast R-CNN(fast region-based convolutional network)、Faster R-CNN、YOLOv4(you only look once version 4)分别提高了13.5%、3.4%、5.8%,比SSD300(single shot MultiBox detector 300)、YOLOv3、RetinaNet分别提高了9.5%、8.5%、8%。与Faster R-CNN相比,本文方法的误检率降低了5.61%,漏检率降低了3.01%。结论本文提出的防震锤缺陷检测方法对不同背景、不同光照、不同角度、不同尺度、不同种类和不同缺陷种类的防震锤均有较好的检测结果,不但可以更好地提取防震锤的特征,而且还能提高分类和位置预测网络的定位精度,从而有效提高了防震锤缺陷检测算法的准确率,在满足防震锤巡检工作实际检测要求的同时还具有较好的鲁棒性和有效性。 展开更多
关键词 防震锤缺陷 深度学习 小尺度目标检测 跨层特征融合 级联检测
原文传递
面向非对称特征注意力和特征融合的太赫兹图像检测 被引量:2
4
作者 曾文健 朱艳 +2 位作者 沈韬 曾凯 刘英莉 《中国图象图形学报》 CSCD 北大核心 2022年第8期2496-2505,共10页
目的 太赫兹由于穿透性强、对人体无害等特性在安检领域中得到了广泛关注。太赫兹图像中目标尺寸较小、特征有限,且图像分辨率低,目标边缘信息模糊,目标信息容易和背景信息混淆,为太赫兹图像检测带来了一定困难。方法 本文在YOLO(you on... 目的 太赫兹由于穿透性强、对人体无害等特性在安检领域中得到了广泛关注。太赫兹图像中目标尺寸较小、特征有限,且图像分辨率低,目标边缘信息模糊,目标信息容易和背景信息混淆,为太赫兹图像检测带来了一定困难。方法 本文在YOLO(you only look once)算法的基础上提出了一种融合非对称特征注意力和特征融合的目标检测网络AFA-YOLO(asymmetric feature attention-YOLO)。在特征提取网络CSPDarkNet53(cross stage paritial DarkNet53)中设计了非对称特征注意力模块。该模块在浅层网络中采用非对称卷积强化了网络的特征提取能力,帮助网络模型在目标特征有限的太赫兹图像中提取到更有效的目标信息;使用通道注意力和空间注意力机制使网络更加关注图像中目标的重要信息,抑制与目标无关的背景信息;AFA-YOLO通过增加网络中低层到高层的信息传输路径对高层特征进行特征融合,充分利用到低层高分辨率特征进行小目标的检测。结果 本文在太赫兹数据集上进行了相关实验,相比原YOLOv4算法,AFA-YOLO对phone的检测精度为81.15%,提升了4.12%,knife的检测精度为83.06%,提升了3.72%。模型平均精度均值(mean average precision, mAP)为82.36%,提升了3.92%,漏警率(missing alarm, MA)为12.78%,降低了2.65%,帧率为32.26帧/s,降低了4.06帧/s。同时,本文在太赫兹数据集上对比了不同的检测算法,综合检测速度、检测精度和漏警率,AFA-YOLO优于其他目标检测算法。结论 本文提出的AFA-YOLO算法在保证实时性检测的同时有效提升了太赫兹图像中目标的检测精度并降低了漏警率。 展开更多
关键词 太赫兹图像 小尺度目标检测 YOLOv4 非对称卷积 注意力机制 特征融合
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部