In this study, a gemini-like cationic lipid (CLD) was used as the carrier to study the complexation features of CLD/ siRNA nanoplexes (CLD/siRNA NPs). Three types of CLD/siRNA nanoplexes (named as AT NPs, HT NPs ...In this study, a gemini-like cationic lipid (CLD) was used as the carrier to study the complexation features of CLD/ siRNA nanoplexes (CLD/siRNA NPs). Three types of CLD/siRNA nanoplexes (named as AT NPs, HT NPs and MT NPs) were prepared by different processes: AT method (mixing siRNA solution with preformed CLD nanoparticles), HT method (hydrating a CLD thin film with siRNA solution), and MT method (dropping an ethanolic solution of CLD into siRNA solution under sonication). The particle size, zeta potential, morphology, siRNA protection, cytotoxicity, cellular uptake, and targeted mRNA downregulation were studied. At the optimal N/P ratio of 10, the sizes of the three CLD/siRNA NPs were MT NPs ((222.3±19.1) nm)〉 HT NPs ((105.7±1.31) nm)〉AT NPs ((91.8±1.75) nm). Different nanostructures were formed despite the fact that they were composed of the same components. Furthermore, the TEM images indicated that different morphologies were found in the three NPs, indicating that the nanoplexes were assembled by different mechanisms. Among the three NPs, the cell uptake capacity were as follows: AT NPs〉MT NPs〉HT NPs, whereas the silencing levels on epidermal growth factor receptor (EGFR) in HeLa cells were MT NPs〉AT NPs〉HT NPs. Based on the above results, we hypothesized that the different preparation processes resulted in nanostructures with varying biological effects. Therefore, we believe that structural optimization of siRNA nanoplexes is essential in achieving better siRNA encapsulation, protection, and gene silencing efficiency.展开更多
To achieve a higher transfection efficiency and lower toxicity, a novel herringbone-like cationic lipid(2 ss HLL) composed of hydrophilic aspartic acid linked with two reduction-responsive cleavable hydrophobic olei...To achieve a higher transfection efficiency and lower toxicity, a novel herringbone-like cationic lipid(2 ss HLL) composed of hydrophilic aspartic acid linked with two reduction-responsive cleavable hydrophobic oleic acid tails was synthesized and assessed in this study. In our results, the cationic nanoplexes with a uniform spherical shape and a particle size of ~150 nm were successfully prepared by the electrostatic interaction between si RNAs and 2 ss HLL-based liposomes. From the results evaluated in Hep G2 cells, it was shown that the nanoplexes exhibited high cellular uptake of si RNA with a low cytotoxicity. Moreover, the significant down-regulation effects of 2 ss HLL/si EGFR nanoplexes on target m RNA were displayed by RT-PCR analysis, which were similar to those of Lipofectamine2000. It suggested that the enhanced si RNA gene silencing efficiency was probably attributed to the detachment of hydrophobic tail chains induced by reduction-responsive cleavage. This mechanism was also confirmed by the changes of size distribution and si RNA release of nanoplexes in the reductive environment and DTT-absence condition. Overall, we believed that the redox-active herringbone-like 2 ss HLL would be a potential nanocarrier towards si RNA delivery.展开更多
SDF-1/CXCR4 has been recognized as one of the most relevant chemokine signaling pathways to cancer metastasis,and siRNA targeting CXCR4 may provide potential improvements to treat those highly metastatic cancers,espec...SDF-1/CXCR4 has been recognized as one of the most relevant chemokine signaling pathways to cancer metastasis,and siRNA targeting CXCR4 may provide potential improvements to treat those highly metastatic cancers,especially when combined with chemotherapy.In the present study,we constructed riboflavin-modified lipo-polyplexes to co-deliver CXCR4 siRNA and doxorubicin for cancer therapy.Doxorubicin was covalently conjugated to polyethyleneimine(PEI)with acid-cleavable hydrazine bond,and the obtained acid-sensitive conjugate was efficiently condensed with siRNA to form polyplexes,which were further coated with riboflavin-tailed lipid-membrane to prepare the lipo-polyplexes conveniently.Utilizing the fact that tumor cells overexpress riboflavin receptors,the riboflavin modification effectively enhanced uptake of lipo-polyplexes by tumor cells in a receptor-mediated manner.The riboflavin-modified lipo-polyplexes co-delivering CXCR4 siRNA and doxorubicin effectively decreased viability and invasiveness of tumor cells in vitro,and inhibited primary tumor growth and tumor metastasis in vivo.展开更多
RNA interference (RNAi) effectors such as small interfering RNA (siRNA) and micro RNA (miRNA) can selectively downregulate any gene implicated in the pathology of a disease. Therefore, RNAi-based therapies have ...RNA interference (RNAi) effectors such as small interfering RNA (siRNA) and micro RNA (miRNA) can selectively downregulate any gene implicated in the pathology of a disease. Therefore, RNAi-based therapies have immense potential for the treatment of a wide range of diseases. However, pharmacokinetic and pharmacodynamic studies have revealed that these therapeutic agents have poor bioactivity due to a number of factors, including insufficient plasma drug levels, short plasma half-lives, renal clearance, and hepatic metabolism. Non-viral delivery may facilitate the clinical application of siRNA-based therapeutics by helping to overcome these barriers. Recently, the potential of gold nanoparticles (AuNPs) as multifunctional carriers for transporting drugs, proteins, and genetic materials has been demonstrated. In this review, some of the key properties of AuNPs relevant to siRNA delivery, such as physical properties and surface chemistry have been described. In addition, the ability of AuNP-based formulation strategies to successfully overcome delivery barriers associated with siRNA, and the potential for this material to translate into safe and effective nanomedicines are critically discussed.展开更多
基金National Basic Research Program of China(973 program,Grant No.2013CB932501)the National Natural Science Foundation of China(Grant No.81273455,81473158 and 81573374)Programs of Ministry of Education of China(Grant No.NCET-11-0014 and BMU20110263)
文摘In this study, a gemini-like cationic lipid (CLD) was used as the carrier to study the complexation features of CLD/ siRNA nanoplexes (CLD/siRNA NPs). Three types of CLD/siRNA nanoplexes (named as AT NPs, HT NPs and MT NPs) were prepared by different processes: AT method (mixing siRNA solution with preformed CLD nanoparticles), HT method (hydrating a CLD thin film with siRNA solution), and MT method (dropping an ethanolic solution of CLD into siRNA solution under sonication). The particle size, zeta potential, morphology, siRNA protection, cytotoxicity, cellular uptake, and targeted mRNA downregulation were studied. At the optimal N/P ratio of 10, the sizes of the three CLD/siRNA NPs were MT NPs ((222.3±19.1) nm)〉 HT NPs ((105.7±1.31) nm)〉AT NPs ((91.8±1.75) nm). Different nanostructures were formed despite the fact that they were composed of the same components. Furthermore, the TEM images indicated that different morphologies were found in the three NPs, indicating that the nanoplexes were assembled by different mechanisms. Among the three NPs, the cell uptake capacity were as follows: AT NPs〉MT NPs〉HT NPs, whereas the silencing levels on epidermal growth factor receptor (EGFR) in HeLa cells were MT NPs〉AT NPs〉HT NPs. Based on the above results, we hypothesized that the different preparation processes resulted in nanostructures with varying biological effects. Therefore, we believe that structural optimization of siRNA nanoplexes is essential in achieving better siRNA encapsulation, protection, and gene silencing efficiency.
基金National Natural Science Foundation of China(Grant No.81473158,81690264 and 81773650)the New Drug R&D program of China(Grant No.2018ZX09721003-004)the Opening Project of Key Laboratory of Drug Targeting and Drug Delivery System,Ministry of Education(Sichuan University)
文摘To achieve a higher transfection efficiency and lower toxicity, a novel herringbone-like cationic lipid(2 ss HLL) composed of hydrophilic aspartic acid linked with two reduction-responsive cleavable hydrophobic oleic acid tails was synthesized and assessed in this study. In our results, the cationic nanoplexes with a uniform spherical shape and a particle size of ~150 nm were successfully prepared by the electrostatic interaction between si RNAs and 2 ss HLL-based liposomes. From the results evaluated in Hep G2 cells, it was shown that the nanoplexes exhibited high cellular uptake of si RNA with a low cytotoxicity. Moreover, the significant down-regulation effects of 2 ss HLL/si EGFR nanoplexes on target m RNA were displayed by RT-PCR analysis, which were similar to those of Lipofectamine2000. It suggested that the enhanced si RNA gene silencing efficiency was probably attributed to the detachment of hydrophobic tail chains induced by reduction-responsive cleavage. This mechanism was also confirmed by the changes of size distribution and si RNA release of nanoplexes in the reductive environment and DTT-absence condition. Overall, we believed that the redox-active herringbone-like 2 ss HLL would be a potential nanocarrier towards si RNA delivery.
基金The National Nature Science Foundation of China(Grant No.81973258 and 81673365)State Key Laboratory of Advanced Pharmaceutical Formulation with High Technology in Yangtze River Pharmaceutical Group.
文摘SDF-1/CXCR4 has been recognized as one of the most relevant chemokine signaling pathways to cancer metastasis,and siRNA targeting CXCR4 may provide potential improvements to treat those highly metastatic cancers,especially when combined with chemotherapy.In the present study,we constructed riboflavin-modified lipo-polyplexes to co-deliver CXCR4 siRNA and doxorubicin for cancer therapy.Doxorubicin was covalently conjugated to polyethyleneimine(PEI)with acid-cleavable hydrazine bond,and the obtained acid-sensitive conjugate was efficiently condensed with siRNA to form polyplexes,which were further coated with riboflavin-tailed lipid-membrane to prepare the lipo-polyplexes conveniently.Utilizing the fact that tumor cells overexpress riboflavin receptors,the riboflavin modification effectively enhanced uptake of lipo-polyplexes by tumor cells in a receptor-mediated manner.The riboflavin-modified lipo-polyplexes co-delivering CXCR4 siRNA and doxorubicin effectively decreased viability and invasiveness of tumor cells in vitro,and inhibited primary tumor growth and tumor metastasis in vivo.
文摘RNA interference (RNAi) effectors such as small interfering RNA (siRNA) and micro RNA (miRNA) can selectively downregulate any gene implicated in the pathology of a disease. Therefore, RNAi-based therapies have immense potential for the treatment of a wide range of diseases. However, pharmacokinetic and pharmacodynamic studies have revealed that these therapeutic agents have poor bioactivity due to a number of factors, including insufficient plasma drug levels, short plasma half-lives, renal clearance, and hepatic metabolism. Non-viral delivery may facilitate the clinical application of siRNA-based therapeutics by helping to overcome these barriers. Recently, the potential of gold nanoparticles (AuNPs) as multifunctional carriers for transporting drugs, proteins, and genetic materials has been demonstrated. In this review, some of the key properties of AuNPs relevant to siRNA delivery, such as physical properties and surface chemistry have been described. In addition, the ability of AuNP-based formulation strategies to successfully overcome delivery barriers associated with siRNA, and the potential for this material to translate into safe and effective nanomedicines are critically discussed.