Colonoscopy sometimes causes pain during insertion,especially in difficult cases.Over-insufflation of air causes elongation or acute angulations of the colon,making passage of the scope difficult and causing pain.We p...Colonoscopy sometimes causes pain during insertion,especially in difficult cases.Over-insufflation of air causes elongation or acute angulations of the colon,making passage of the scope difficult and causing pain.We previously reported a sedative-risk-free colonoscopy insertion technique,namely,"Water Navigation Colonoscopy".Complete air suction after water infusion not only improves the vision,but also makes water flow down to the descending colon,while the sigmoid colon collapses and shortens.While non-sedative colonoscopy can be carried out without pain in most cases,some patients do complain of pain.Most of these patients have abnormal colon morphology,and the pain is caused while negotiating the "hairpin" bends of the colon.The "hairpin" bends of the colon should be negotiated by gently pushing the full-angled colonoscope.The proximal 10-20 cm from the angulated part of the conventional colonoscope is stiff,with a wide turning radius,therefore,a conventional colonoscope cannot be negotiated through the "hairpin" bends of the colon without stretching them and causing pain.The "passive-bending colonoscope" has a flexible tip with a narrow turning radius,so that the scope can be negotiated through the "hairpin" bends of the colon with a minimum turning radius and minimal discomfort.Therefore,the intubation and pain-reducing performance of the "passive-bending colonoscope" was assessed in difficult cases.展开更多
In this paper, we study the upper bounds on the mass insertion parameters (δAB^q)ij in the minimal super symmetric standard model. We found that the information from the measured branching ratio of B→ X8γ, X8l+l...In this paper, we study the upper bounds on the mass insertion parameters (δAB^q)ij in the minimal super symmetric standard model. We found that the information from the measured branching ratio of B→ X8γ, X8l+l- decay can help us to improve the upper bounds on the mass insertions parameters (δAB^u,d)3j,i3 Some regions allowed by the data of Br(B→ X8γ) are excluded by the requirement of an SM-like C7γ (rnb) imposedby the data of Br(B→ X8γ, X8l+l- ).展开更多
A path-based timing optimization algorithm for buffer insertion and simultaneous sizing is proposed. Firstly, candidate buffer insertion location and buffer size for each branch in a given routing path were obtained v...A path-based timing optimization algorithm for buffer insertion and simultaneous sizing is proposed. Firstly, candidate buffer insertion location and buffer size for each branch in a given routing path were obtained via localized timing optimization. Then, through evaluating each potential insertion against design objectives, potential optimal buffer insertion locations and sizes for the whole routing tree were determined. At last, by removing redundant buffer insertion operations which do not maximize S ( so ), given timing requirements are finally fulfilled through minimum number of buffers.展开更多
To investigated the usefulness of a novel slim type ball-tipped FlushKnife (FlushKnife-BTS) over ball-tipped FlushKnife (FlushKnife-BT) in functional experiments and clinical practice.METHODSIn order to evaluate the f...To investigated the usefulness of a novel slim type ball-tipped FlushKnife (FlushKnife-BTS) over ball-tipped FlushKnife (FlushKnife-BT) in functional experiments and clinical practice.METHODSIn order to evaluate the functionality of FlushKnife-BTS, water aspiration speed, resistance to knife insertion through the scope, and waterjet flushing speed were compared between FlushKnife-BTS and BT. In clinical practice, esophageal endoscopic submucosal dissection (ESD) performed using FlushKnife-BTS or BT by an experienced endoscopist between October 2015 and January 2016 were retrospectively reviewed. The treatment speed and frequency of removing and reinserting the knife to aspirate fluid and air during ESD sessions were analyzed.RESULTSFunctional experiments revealed that water aspiration speed by the endoscope equipped with a 2.8-mm working channel with FlushKnife-BTS was 7.7-fold faster than that with conventional FlushKnife-BT. Resistance to knife insertion inside the scope with a 2.8-mm working channel was reduced by 40% with FlushKnife-BTS. The waterjet flushing speed was faster with the use of FlushKnife-BT. In clinical practice, a comparison of 6 and 7 ESD using FlushKnife-BT and BTS, respectively, revealed that the median treatment speed was 25.5 mm<sup>2</sup>/min (range 19.6-30.3) in the BT group and 44.2 mm<sup>2</sup>/min (range 15.5-55.4) in the BTS group (P = 0.0633). However, the median treatment speed was significantly faster with FlushKnife-BTS when the resection size was larger than 1000 m<sup>2</sup> (n = 4, median 24.2 mm<sup>2</sup>/min, range 19.6-27.7 vs n = 4, median 47.4 mm<sup>2</sup>/min, range 44.2-55.4, P = 0.0209). The frequency of knife replacement was less in the BTS group (median 1.76 times in one hour, range 0-5.45) than in the BT group (7.02 times in one hour, range 4.23-15) (P = 0.0065).CONCLUSIONOur results indicate that FlushKnife-BTS enhances the performance of ESD, particularly for large lesions, by improving air and fluid aspiration and knife insertion during ESD and reducing the frequency of knife removal and reinsertion.展开更多
文摘Colonoscopy sometimes causes pain during insertion,especially in difficult cases.Over-insufflation of air causes elongation or acute angulations of the colon,making passage of the scope difficult and causing pain.We previously reported a sedative-risk-free colonoscopy insertion technique,namely,"Water Navigation Colonoscopy".Complete air suction after water infusion not only improves the vision,but also makes water flow down to the descending colon,while the sigmoid colon collapses and shortens.While non-sedative colonoscopy can be carried out without pain in most cases,some patients do complain of pain.Most of these patients have abnormal colon morphology,and the pain is caused while negotiating the "hairpin" bends of the colon.The "hairpin" bends of the colon should be negotiated by gently pushing the full-angled colonoscope.The proximal 10-20 cm from the angulated part of the conventional colonoscope is stiff,with a wide turning radius,therefore,a conventional colonoscope cannot be negotiated through the "hairpin" bends of the colon without stretching them and causing pain.The "passive-bending colonoscope" has a flexible tip with a narrow turning radius,so that the scope can be negotiated through the "hairpin" bends of the colon with a minimum turning radius and minimal discomfort.Therefore,the intubation and pain-reducing performance of the "passive-bending colonoscope" was assessed in difficult cases.
基金The project partly supported by National Natural Science Foundation of China under Grant Nos. 10275035 and 10575052 and the Research Foundation of Nanjing Normal University under Grant No. 214080A916 .
文摘In this paper, we study the upper bounds on the mass insertion parameters (δAB^q)ij in the minimal super symmetric standard model. We found that the information from the measured branching ratio of B→ X8γ, X8l+l- decay can help us to improve the upper bounds on the mass insertions parameters (δAB^u,d)3j,i3 Some regions allowed by the data of Br(B→ X8γ) are excluded by the requirement of an SM-like C7γ (rnb) imposedby the data of Br(B→ X8γ, X8l+l- ).
文摘A path-based timing optimization algorithm for buffer insertion and simultaneous sizing is proposed. Firstly, candidate buffer insertion location and buffer size for each branch in a given routing path were obtained via localized timing optimization. Then, through evaluating each potential insertion against design objectives, potential optimal buffer insertion locations and sizes for the whole routing tree were determined. At last, by removing redundant buffer insertion operations which do not maximize S ( so ), given timing requirements are finally fulfilled through minimum number of buffers.
文摘To investigated the usefulness of a novel slim type ball-tipped FlushKnife (FlushKnife-BTS) over ball-tipped FlushKnife (FlushKnife-BT) in functional experiments and clinical practice.METHODSIn order to evaluate the functionality of FlushKnife-BTS, water aspiration speed, resistance to knife insertion through the scope, and waterjet flushing speed were compared between FlushKnife-BTS and BT. In clinical practice, esophageal endoscopic submucosal dissection (ESD) performed using FlushKnife-BTS or BT by an experienced endoscopist between October 2015 and January 2016 were retrospectively reviewed. The treatment speed and frequency of removing and reinserting the knife to aspirate fluid and air during ESD sessions were analyzed.RESULTSFunctional experiments revealed that water aspiration speed by the endoscope equipped with a 2.8-mm working channel with FlushKnife-BTS was 7.7-fold faster than that with conventional FlushKnife-BT. Resistance to knife insertion inside the scope with a 2.8-mm working channel was reduced by 40% with FlushKnife-BTS. The waterjet flushing speed was faster with the use of FlushKnife-BT. In clinical practice, a comparison of 6 and 7 ESD using FlushKnife-BT and BTS, respectively, revealed that the median treatment speed was 25.5 mm<sup>2</sup>/min (range 19.6-30.3) in the BT group and 44.2 mm<sup>2</sup>/min (range 15.5-55.4) in the BTS group (P = 0.0633). However, the median treatment speed was significantly faster with FlushKnife-BTS when the resection size was larger than 1000 m<sup>2</sup> (n = 4, median 24.2 mm<sup>2</sup>/min, range 19.6-27.7 vs n = 4, median 47.4 mm<sup>2</sup>/min, range 44.2-55.4, P = 0.0209). The frequency of knife replacement was less in the BTS group (median 1.76 times in one hour, range 0-5.45) than in the BT group (7.02 times in one hour, range 4.23-15) (P = 0.0065).CONCLUSIONOur results indicate that FlushKnife-BTS enhances the performance of ESD, particularly for large lesions, by improving air and fluid aspiration and knife insertion during ESD and reducing the frequency of knife removal and reinsertion.