A continuous wavelet transform(CWT)and globallocal feature(GLF)extraction-based signal classificationalgorithm is proposed to improve the signal classification accuracy.First,the CWT is utilized to generate the timefr...A continuous wavelet transform(CWT)and globallocal feature(GLF)extraction-based signal classificationalgorithm is proposed to improve the signal classification accuracy.First,the CWT is utilized to generate the timefrequency scalogram.Then,the GLF extraction method is proposed to extract features from the time-frequency scalogram.Finally,a classification method based on the support vector machine(SVM)is proposed to classify the extracted features.Experimental results show that the extended binary phase shift keying(EBPSK)bit error rate(BER)of the proposed classification algorithm is1.3x10_5under the environment of additional white Gaussian noise with the signal-to-noise ratio of-3dB,which is24times lower than that of the SVM-based signal classification method.Meanwhile,the BER using the GLF extraction method is13times lower than the one using the global feature extraction method and24times lower than the one using the local feature extraction method.展开更多
A least squares version of the recently proposed weighted twin support vector machine with local information(WLTSVM) for binary classification is formulated. This formulation leads to an extremely simple and fast algo...A least squares version of the recently proposed weighted twin support vector machine with local information(WLTSVM) for binary classification is formulated. This formulation leads to an extremely simple and fast algorithm, called least squares weighted twin support vector machine with local information(LSWLTSVM), for generating binary classifiers based on two non-parallel hyperplanes. Two modified primal problems of WLTSVM are attempted to solve, instead of two dual problems usually solved. The solution of the two modified problems reduces to solving just two systems of linear equations as opposed to solving two quadratic programming problems along with two systems of linear equations in WLTSVM. Moreover, two extra modifications were proposed in LSWLTSVM to improve the generalization capability. One is that a hot kernel function, not the simple-minded definition in WLTSVM, is used to define the weight matrix of adjacency graph, which ensures that the underlying similarity information between any pair of data points in the same class can be fully reflected. The other is that the weight for each point in the contrary class is considered in constructing equality constraints, which makes LSWLTSVM less sensitive to noise points than WLTSVM. Experimental results indicate that LSWLTSVM has comparable classification accuracy to that of WLTSVM but with remarkably less computational time.展开更多
基金The National Key Technology R&D Program(No.2012BAH15B00)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX150076)
文摘A continuous wavelet transform(CWT)and globallocal feature(GLF)extraction-based signal classificationalgorithm is proposed to improve the signal classification accuracy.First,the CWT is utilized to generate the timefrequency scalogram.Then,the GLF extraction method is proposed to extract features from the time-frequency scalogram.Finally,a classification method based on the support vector machine(SVM)is proposed to classify the extracted features.Experimental results show that the extended binary phase shift keying(EBPSK)bit error rate(BER)of the proposed classification algorithm is1.3x10_5under the environment of additional white Gaussian noise with the signal-to-noise ratio of-3dB,which is24times lower than that of the SVM-based signal classification method.Meanwhile,the BER using the GLF extraction method is13times lower than the one using the global feature extraction method and24times lower than the one using the local feature extraction method.
基金Project(61105057)supported by the National Natural Science Foundation of ChinaProject(13KJB520024)supported by the Natural Science Foundation of Jiangsu Higher Education Institutes of ChinaProject supported by Jiangsu Province Qing Lan Project,China
文摘A least squares version of the recently proposed weighted twin support vector machine with local information(WLTSVM) for binary classification is formulated. This formulation leads to an extremely simple and fast algorithm, called least squares weighted twin support vector machine with local information(LSWLTSVM), for generating binary classifiers based on two non-parallel hyperplanes. Two modified primal problems of WLTSVM are attempted to solve, instead of two dual problems usually solved. The solution of the two modified problems reduces to solving just two systems of linear equations as opposed to solving two quadratic programming problems along with two systems of linear equations in WLTSVM. Moreover, two extra modifications were proposed in LSWLTSVM to improve the generalization capability. One is that a hot kernel function, not the simple-minded definition in WLTSVM, is used to define the weight matrix of adjacency graph, which ensures that the underlying similarity information between any pair of data points in the same class can be fully reflected. The other is that the weight for each point in the contrary class is considered in constructing equality constraints, which makes LSWLTSVM less sensitive to noise points than WLTSVM. Experimental results indicate that LSWLTSVM has comparable classification accuracy to that of WLTSVM but with remarkably less computational time.