Cyano substitution has been established as a viable approach to optimize the performance of all-small-molecule organic solar cells.However,the effect of cyano substitution on the dynamics of photo-charge generation re...Cyano substitution has been established as a viable approach to optimize the performance of all-small-molecule organic solar cells.However,the effect of cyano substitution on the dynamics of photo-charge generation remains largely unexplored.Here,we report an ultrafast spectroscopic study showing that electron transfer is markedly promoted by enhanced intermolecular charge-transfer interaction in all-small-molecule blends with cyanided donors.The delocalized excitations,arising from intermolecular interaction in the moiety of cyano-substituted donor,undergo ultrafast electron transfer with a lifetime of∼3 ps in the blend.In contrast,some locally excited states,surviving in the film of donor without cyano substitution,are not actively involved in the charge separation.These findings well explain the performance improvement of devices with cyanided donors,suggesting that manipulating intermolecular interaction is an efficient strategy for device optimization.展开更多
Four organic smallmolecule hole transport materials(D41, D42,D43 and D44) of tetraarylpyrrolo[3,2-b]pyrroles were prepared. They can be used without doping in the manufacture of the inverted planar perovskite solar ce...Four organic smallmolecule hole transport materials(D41, D42,D43 and D44) of tetraarylpyrrolo[3,2-b]pyrroles were prepared. They can be used without doping in the manufacture of the inverted planar perovskite solar cells. Tetraarylpyrrolo[3,2-b]pyrroles are accessible for one-pot synthesis.D42, D43 and D44 possess acceptor-π-donor-π-acceptor structure, on which the aryl bearing substitutes of cyan, fluorine and trifluoromethyl, respectively. Instead, the aryl moiety of D41 is in presence of methyl with a donor-π-donor-π-donor structure. The different substitutes significantly affected their molecular surface charge distribution and thin-film morphology, attributing to the electron-rich properties of fused pyrrole ring. The size of perovskite crystalline growth particles is affected by different molecular structures,and the electron-withdrawing cyan group of D42 is most conducive to the formation of large perovskite grains. The D42 fabricated devices with power conversion efficiency of17.3% and retained 55% of the initial photoelectric conversion efficiency after 22 days in dark condition. The pyrrolo[3,2-b]pyrrole is efficient electron-donating moiety for hole transporting materials to form good substrate in producing perovskite thin film.展开更多
Organic small molecules (TPA-BT3T, TPA-PT3T, and TPA-DFBT3T) using triphenylamine as a donor unit, terthiophene as a bridge, and benzo-2,1,3-thiadiazole (BT), [1,2,5]thiadiazolo[3,4-e]pyridine (PT) or 5,6-difluo...Organic small molecules (TPA-BT3T, TPA-PT3T, and TPA-DFBT3T) using triphenylamine as a donor unit, terthiophene as a bridge, and benzo-2,1,3-thiadiazole (BT), [1,2,5]thiadiazolo[3,4-e]pyridine (PT) or 5,6-difluorobenzo[c][1,2,5]thiadiazole (DFBT) as an acceptor unit were designed and synthesized through Suzuki coupling reactions. These molecules exhibited good thermal stability with decomposition temperatures over 380℃ and broad absorption from 300 to 700 nm. Photovoltaic devices were fabricated with these small molecules as donors and PC71BM as an acceptor. The TPA-BT3T based devices exhibited a power conversion efficiency of 2.89%, higher than those of the TPA-PT3T- and TPA-DFBT3T-based devices (1.34% and 1.54% respectively). The effects of electron-withdrawing units on absorption, energy level, charge transport, morphology, and photovoltaic properties also were investigated.展开更多
This review begins with an overview of the appealing properties and various applications of gold nanoparticles, and briefly summarizes recent advances in using unmodified gold nanoparticles to detect different kinds o...This review begins with an overview of the appealing properties and various applications of gold nanoparticles, and briefly summarizes recent advances in using unmodified gold nanoparticles to detect different kinds of targets including nucleic acids, proteins, metal ions and small organic molecules. The key point to the unmodified gold nanoparticle-based visual detection assay is to control dispersion and aggregation of colloidal nanoparticles by targets of interest, which usually relies on affinities between gold nanoparticles and targets. The degree of dispersion or aggregation can be visualized through the change of the solution color or the precipitation of nanoparticles from the solution. Thus, the existence of the target molecules can be trans-lated into optical signals and monitored by the naked eye conveniently. Finally, some future prospects of this research field are given.展开更多
Long-lived organic room-temperature phosphorescent(RTP)materials have attracted widespread attention because of their fantastic properties and application prospects.The current methods for developing RTP materials are...Long-lived organic room-temperature phosphorescent(RTP)materials have attracted widespread attention because of their fantastic properties and application prospects.The current methods for developing RTP materials are mainly based on the synthesis of new chromophore molecules and crystallization engineering.However,there are great challenges in the preparation of new chromophore molecules and the use of crystalline materials.Herein,dynamic stimulus-responsive long-lived RTP systems with various emission colors are realized by doping organic chromophore molecules into polymer matrix prepared from vinyl acetate and acrylic acid.Through UV light irradiation,the growth process of long-lived RTP phenomena can be observed for up to 10 s.In particular,the phosphorescence intensity,lifetime,afterglow brightness,and quantum yield of one representative film(P2-M2)increase by 155,262,414,and 8 times after the irradiation,respectively.The unique photophysical phenomena are ascribed to the oxygen consumption characteristics of the polymer matrix under UV irradiation.Meanwhile,the information storage devices are prepared with these RTP systems.This work provides a strategy for achieving small organic molecule-doped polymer RTP systems that are easy to prepare,low-cost,and widely adaptable.展开更多
Fluorescent nanoparticles (NPs), including quantum dots (QDs), dye-doped NPs, and rare earth-based NPs, etc., have been a major focus of research and development during the past decade. The impetus behind such endeavo...Fluorescent nanoparticles (NPs), including quantum dots (QDs), dye-doped NPs, and rare earth-based NPs, etc., have been a major focus of research and development during the past decade. The impetus behind such endeavors can be attributed to their unique chemical and optical properties, such as bright fluorescence, high photostability, large Stocks shift and flexible processability. The introduction of fluorescent NPs into analytical chemistry has opened up new venues for fluorescent analysis. In this review, we focus on the developments and analytical applications of fluorescent NPs in the chemical and biological sensing of pH, ions, organic compounds, small biological molecules, nucleic acids, proteins, virus and bacteria. The review also points out the in vitro and in vivo imaging application of fluorescent NPs at the cell and body levels. Meanwhile, the ad- vantages of NPs brought field of sensing and signal transductions are also discussed.展开更多
Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of t...Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of the centerpieces of OLEDs, has been the focus of studies by many material scientists. To obtain high luminosity and to keep material costs low, a few remarkable design concepts have been developed. Aggregation-induced emission (AIE) materials were invented to overcome the common fluorescence-quenching problem, and cross-dipole stacking of fluorescent molecules was shown to be an effective method to get high solid-state luminescence. To exceed the limit of internal quantum efficiency of conventional fluorescent materials, phosphorescent materials were successfully applied in highly efficient electroluminescent devices. Most recently, delayed flu- orescent materials via reverse-intersystem crossing (RISC) from triplet to singlet and the "hot exciton" materials based on hy- bridized local and charge-transfer (HLCT) states were developed to he a new generation of low-cost luminescent materials as efficient as phosphorescent materials. In terms of the device-fabrication process, solution-processible small molecular lumi- nescent materials possess the advantages of high purity (vs. polymers) and low procession cost (vs. vacuum deposition), which are garnering them increasing attention. Herein, we review the progress of the development of small-molecule luminescent materials with different design concepts and features, and also briefly examine future development tendencies of luminescent materials.展开更多
N-heterocyclic carbene (NHC) is both a family of strong o-donor ligands for transition metals and a privileged class of organocatalysts with synthetic potential that rivals popu- lar amine and phosphoric acid cataly...N-heterocyclic carbene (NHC) is both a family of strong o-donor ligands for transition metals and a privileged class of organocatalysts with synthetic potential that rivals popu- lar amine and phosphoric acid catalysts. NHC was found as a key catalytic species in thiamine diphosphate catalyzed biochemical reactions [1]. However, due to their inherent chemical instability, free NHCs had not been isolated until 1991 by Ardungo et al. [2]. Since then, the use of chiral NHC as a versatile organocatalyst has enjoyed tremendous advances and has helped to transform modem synthetic chemistry. There are over 2000 research papers dealing with both "N-heterocyclic carbene" and "Catalysis" in the past 15 years [3].展开更多
Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as the central building block, octyl cyanoacetate, 3-octylrhod...Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as the central building block, octyl cyanoacetate, 3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells (OPVs). The impacts of these different electron withdrawing end groups on the photophysical properties, energy levels, charge carrier mobility, morphologies of blend films, and their photovoltaic properties have been systematically investigated. OPVs device based on DRDTBDT gave the best power conversion efficiency (PCE) of 8.34%, which was significantly higher than that based on DCAODTBDT (4.83%) or DTBDTBDT (3.39%). These results indicate that rather dedicated and balanced consideration of absorption, energy levels, morphology, mobility, etc. for the design of small-molecule-based OPVs (SM-OPVs) and systematic investigations are highly needed to achieve high performance for SM-OPVs.展开更多
Two novel organic small molecule donor materials(FLU),TDPP and(DFLU)_(2)TDPP based on diketopyrrolopyrrole-fluorene were designed and synthesized successfully.The D-D-π-A-π-D-D type molecule(DFLU)_(2)TDPP was constr...Two novel organic small molecule donor materials(FLU),TDPP and(DFLU)_(2)TDPP based on diketopyrrolopyrrole-fluorene were designed and synthesized successfully.The D-D-π-A-π-D-D type molecule(DFLU)_(2)TDPP was constructed based on the D-π-A-π-D type molecule(FLU)_(2)TDPP by a backbone extension strategy.The optical absorption,electrochemistry and photovoltaic properties of the two novel materials were investigated in detail.Both(FLU)_(2)TDPP and(DFLU)_(2)TDPP show narrow energy gaps of1.71 and 1.64 eV,respectively.Compared to(FLU)_(2)TDPP,the photovoltaic device based on(DFLU)_(2)TDPP/PC_(71)BM exhibited a higher power conversion efficiency of 2.27%due to its excellent optical absorption,narrow band gap and balanced carrier mobility.This study indicates that skeleton extension strategy is an effective strategy to broaden the molecular absorption range and improve device performance.展开更多
基金supported by the National Key R&D Program of China(No.2018YFA0209100 and No.2017YFA0303703)the National Natural Science Foundation of China(No.21922302,No.21873047,No.91850105,and No.91833305)+1 种基金the Fundamental Research Funds for the Central Universities(No.020414380126)Chun-feng Zhang acknowledges financial support from the Tang Scholar Program。
文摘Cyano substitution has been established as a viable approach to optimize the performance of all-small-molecule organic solar cells.However,the effect of cyano substitution on the dynamics of photo-charge generation remains largely unexplored.Here,we report an ultrafast spectroscopic study showing that electron transfer is markedly promoted by enhanced intermolecular charge-transfer interaction in all-small-molecule blends with cyanided donors.The delocalized excitations,arising from intermolecular interaction in the moiety of cyano-substituted donor,undergo ultrafast electron transfer with a lifetime of∼3 ps in the blend.In contrast,some locally excited states,surviving in the film of donor without cyano substitution,are not actively involved in the charge separation.These findings well explain the performance improvement of devices with cyanided donors,suggesting that manipulating intermolecular interaction is an efficient strategy for device optimization.
基金supported by the National Natural Sci-ence Foundation of China(No.21671148)Tianjin Natural Science Foundation(18JCZDJC97000).
文摘Four organic smallmolecule hole transport materials(D41, D42,D43 and D44) of tetraarylpyrrolo[3,2-b]pyrroles were prepared. They can be used without doping in the manufacture of the inverted planar perovskite solar cells. Tetraarylpyrrolo[3,2-b]pyrroles are accessible for one-pot synthesis.D42, D43 and D44 possess acceptor-π-donor-π-acceptor structure, on which the aryl bearing substitutes of cyan, fluorine and trifluoromethyl, respectively. Instead, the aryl moiety of D41 is in presence of methyl with a donor-π-donor-π-donor structure. The different substitutes significantly affected their molecular surface charge distribution and thin-film morphology, attributing to the electron-rich properties of fused pyrrole ring. The size of perovskite crystalline growth particles is affected by different molecular structures,and the electron-withdrawing cyan group of D42 is most conducive to the formation of large perovskite grains. The D42 fabricated devices with power conversion efficiency of17.3% and retained 55% of the initial photoelectric conversion efficiency after 22 days in dark condition. The pyrrolo[3,2-b]pyrrole is efficient electron-donating moiety for hole transporting materials to form good substrate in producing perovskite thin film.
基金supported by the National Natural Science Foundation of China(21025418,51261130582)the National Basic Research Program of China(2011CB808401)the Chinese Academy of Sciences
文摘Organic small molecules (TPA-BT3T, TPA-PT3T, and TPA-DFBT3T) using triphenylamine as a donor unit, terthiophene as a bridge, and benzo-2,1,3-thiadiazole (BT), [1,2,5]thiadiazolo[3,4-e]pyridine (PT) or 5,6-difluorobenzo[c][1,2,5]thiadiazole (DFBT) as an acceptor unit were designed and synthesized through Suzuki coupling reactions. These molecules exhibited good thermal stability with decomposition temperatures over 380℃ and broad absorption from 300 to 700 nm. Photovoltaic devices were fabricated with these small molecules as donors and PC71BM as an acceptor. The TPA-BT3T based devices exhibited a power conversion efficiency of 2.89%, higher than those of the TPA-PT3T- and TPA-DFBT3T-based devices (1.34% and 1.54% respectively). The effects of electron-withdrawing units on absorption, energy level, charge transport, morphology, and photovoltaic properties also were investigated.
基金supported by the Ministry of Science and Technology(Grant Nos. 2009CB930000 and 2011CB933201)the National Natural Science Foundation of China (Grant Nos. 20890020, 21025520 and 90813032)+2 种基金the Chinese Academy of Sciences (Grant No. KJCX2-YW-M15)the Fundamental Research Funds for the Central Universities (Grant No.CDJXS10232211)the Ministry of Human Resources and Social Security of China
文摘This review begins with an overview of the appealing properties and various applications of gold nanoparticles, and briefly summarizes recent advances in using unmodified gold nanoparticles to detect different kinds of targets including nucleic acids, proteins, metal ions and small organic molecules. The key point to the unmodified gold nanoparticle-based visual detection assay is to control dispersion and aggregation of colloidal nanoparticles by targets of interest, which usually relies on affinities between gold nanoparticles and targets. The degree of dispersion or aggregation can be visualized through the change of the solution color or the precipitation of nanoparticles from the solution. Thus, the existence of the target molecules can be trans-lated into optical signals and monitored by the naked eye conveniently. Finally, some future prospects of this research field are given.
基金financially supported by the National Natural Science Foundation of China(21875025)the Special Program of Chongqing Science and Technology Commission(cstc2018jcyjAX0296)+3 种基金the Innovation Research Group at the Institutions of Higher Education in Chongqing(CXQT19027)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K201801101)Chongqing Talent Program,the Science and Technology Project of Banan District,and the Innovation Support Plan for the Returned Overseas of Chongqing(cx2020052)supported by Singapore Academic Research Fund(RT12/19 and MOE-MOET2EP10120-0003)。
文摘Long-lived organic room-temperature phosphorescent(RTP)materials have attracted widespread attention because of their fantastic properties and application prospects.The current methods for developing RTP materials are mainly based on the synthesis of new chromophore molecules and crystallization engineering.However,there are great challenges in the preparation of new chromophore molecules and the use of crystalline materials.Herein,dynamic stimulus-responsive long-lived RTP systems with various emission colors are realized by doping organic chromophore molecules into polymer matrix prepared from vinyl acetate and acrylic acid.Through UV light irradiation,the growth process of long-lived RTP phenomena can be observed for up to 10 s.In particular,the phosphorescence intensity,lifetime,afterglow brightness,and quantum yield of one representative film(P2-M2)increase by 155,262,414,and 8 times after the irradiation,respectively.The unique photophysical phenomena are ascribed to the oxygen consumption characteristics of the polymer matrix under UV irradiation.Meanwhile,the information storage devices are prepared with these RTP systems.This work provides a strategy for achieving small organic molecule-doped polymer RTP systems that are easy to prepare,low-cost,and widely adaptable.
基金supported by the National Natural Science Foundation of China (90606003 & 20775021)International Science & Technology Cooperation Program of China (2010DFB30300)+2 种基金Program for Changjiang Scholar and Innovative Research Team in UniversityProgram for New Century Excellent Talents in University (NCET-09-0338)Hunan Natural Science Foundation (10JJ7002 & 08JJ1002)
文摘Fluorescent nanoparticles (NPs), including quantum dots (QDs), dye-doped NPs, and rare earth-based NPs, etc., have been a major focus of research and development during the past decade. The impetus behind such endeavors can be attributed to their unique chemical and optical properties, such as bright fluorescence, high photostability, large Stocks shift and flexible processability. The introduction of fluorescent NPs into analytical chemistry has opened up new venues for fluorescent analysis. In this review, we focus on the developments and analytical applications of fluorescent NPs in the chemical and biological sensing of pH, ions, organic compounds, small biological molecules, nucleic acids, proteins, virus and bacteria. The review also points out the in vitro and in vivo imaging application of fluorescent NPs at the cell and body levels. Meanwhile, the ad- vantages of NPs brought field of sensing and signal transductions are also discussed.
基金supported by the National Natural Science Foundation of China(21334002,51303057,51373054,91233113)the National Basic Research Program of China(2013CB834705,2014CB643504,2015CB655003)+1 种基金the Fundamental Research Funds for the Central Universities(2013ZZ0001)the Introduced Innovative R&D Team of Guangdong(201101C0105067115)
文摘Organic light-emitting diodes (OLEDs) have been extensively studied since the first efficient device based on small molecular luminescent materials was reported by Tang. Organic electroluminescent material, one of the centerpieces of OLEDs, has been the focus of studies by many material scientists. To obtain high luminosity and to keep material costs low, a few remarkable design concepts have been developed. Aggregation-induced emission (AIE) materials were invented to overcome the common fluorescence-quenching problem, and cross-dipole stacking of fluorescent molecules was shown to be an effective method to get high solid-state luminescence. To exceed the limit of internal quantum efficiency of conventional fluorescent materials, phosphorescent materials were successfully applied in highly efficient electroluminescent devices. Most recently, delayed flu- orescent materials via reverse-intersystem crossing (RISC) from triplet to singlet and the "hot exciton" materials based on hy- bridized local and charge-transfer (HLCT) states were developed to he a new generation of low-cost luminescent materials as efficient as phosphorescent materials. In terms of the device-fabrication process, solution-processible small molecular lumi- nescent materials possess the advantages of high purity (vs. polymers) and low procession cost (vs. vacuum deposition), which are garnering them increasing attention. Herein, we review the progress of the development of small-molecule luminescent materials with different design concepts and features, and also briefly examine future development tendencies of luminescent materials.
基金the National Natural Science Foundation of China (21372013, 21572004)the Shenzhen Peacock Program (KQTD201103)
文摘N-heterocyclic carbene (NHC) is both a family of strong o-donor ligands for transition metals and a privileged class of organocatalysts with synthetic potential that rivals popu- lar amine and phosphoric acid catalysts. NHC was found as a key catalytic species in thiamine diphosphate catalyzed biochemical reactions [1]. However, due to their inherent chemical instability, free NHCs had not been isolated until 1991 by Ardungo et al. [2]. Since then, the use of chiral NHC as a versatile organocatalyst has enjoyed tremendous advances and has helped to transform modem synthetic chemistry. There are over 2000 research papers dealing with both "N-heterocyclic carbene" and "Catalysis" in the past 15 years [3].
基金supported by the Ministry of Science and Technology(2014CB643502,2016YFA0200200)the Natural Science Foundation of China(21404060,51422304,91433101)
文摘Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as the central building block, octyl cyanoacetate, 3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells (OPVs). The impacts of these different electron withdrawing end groups on the photophysical properties, energy levels, charge carrier mobility, morphologies of blend films, and their photovoltaic properties have been systematically investigated. OPVs device based on DRDTBDT gave the best power conversion efficiency (PCE) of 8.34%, which was significantly higher than that based on DCAODTBDT (4.83%) or DTBDTBDT (3.39%). These results indicate that rather dedicated and balanced consideration of absorption, energy levels, morphology, mobility, etc. for the design of small-molecule-based OPVs (SM-OPVs) and systematic investigations are highly needed to achieve high performance for SM-OPVs.
基金supported by the National Natural Science Foundation of China(21102013)the Fundamental Research Funds for the Central Universities(DUT16ZD205)
文摘Two novel organic small molecule donor materials(FLU),TDPP and(DFLU)_(2)TDPP based on diketopyrrolopyrrole-fluorene were designed and synthesized successfully.The D-D-π-A-π-D-D type molecule(DFLU)_(2)TDPP was constructed based on the D-π-A-π-D type molecule(FLU)_(2)TDPP by a backbone extension strategy.The optical absorption,electrochemistry and photovoltaic properties of the two novel materials were investigated in detail.Both(FLU)_(2)TDPP and(DFLU)_(2)TDPP show narrow energy gaps of1.71 and 1.64 eV,respectively.Compared to(FLU)_(2)TDPP,the photovoltaic device based on(DFLU)_(2)TDPP/PC_(71)BM exhibited a higher power conversion efficiency of 2.27%due to its excellent optical absorption,narrow band gap and balanced carrier mobility.This study indicates that skeleton extension strategy is an effective strategy to broaden the molecular absorption range and improve device performance.