期刊文献+
共找到2,047篇文章
< 1 2 103 >
每页显示 20 50 100
小样本学习技术在新型电力系统中的应用与挑战 被引量:1
1
作者 贺兴 潘美琪 艾芊 《电力系统自动化》 EI CSCD 北大核心 2024年第6期74-82,共9页
数据驱动已成为新型电力系统建设及其数字化转型的核心范式,相关算法在负荷预测、状态检修、多主体调控等多项业务中展现出优越的工程效果与应用潜力。然而,实际工程数据往往面临着样本不足、样本不平衡等问题,制约了数据驱动算法的最... 数据驱动已成为新型电力系统建设及其数字化转型的核心范式,相关算法在负荷预测、状态检修、多主体调控等多项业务中展现出优越的工程效果与应用潜力。然而,实际工程数据往往面临着样本不足、样本不平衡等问题,制约了数据驱动算法的最终效果。因此,需要借助小样本学习来应对这一挑战。文中从数据、特征、模型3个层面探究了小样本学习技术,综述并分析了相关技术在场景生成、故障诊断、电力系统暂态稳定评估等业务的应用现状,并进一步指出小样本学习技术在新型电力系统中所面临的不足与挑战。 展开更多
关键词 小样本学习 数据驱动 生成模型 迁移学习
下载PDF
增强提示学习的少样本文本分类方法 被引量:2
2
作者 李睿凡 魏志宇 +2 位作者 范元涛 叶书勤 张光卫 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期1-12,共12页
针对少样本文本分类任务,提出提示学习增强的分类算法(EPL4FTC)。该算法将文本分类任务转换成基于自然语言推理的提示学习形式,在利用预训练语言模型先验知识的基础上实现隐式数据增强,并通过两种粒度的损失进行优化。为捕获下游任务中... 针对少样本文本分类任务,提出提示学习增强的分类算法(EPL4FTC)。该算法将文本分类任务转换成基于自然语言推理的提示学习形式,在利用预训练语言模型先验知识的基础上实现隐式数据增强,并通过两种粒度的损失进行优化。为捕获下游任务中含有的类别信息,采用三元组损失联合优化方法,并引入掩码语言模型任务作为正则项,提升模型的泛化能力。在公开的4个中文文本和3个英文文本分类数据集上进行实验评估,结果表明EPL4FTC方法的准确度明显优于所对比的基线方法。 展开更多
关键词 预训练语言模型 样本学习 文本分类 提示学习 三元组损失
下载PDF
小样本元学习网络在海上船舶识别中的应用
3
作者 付瑞玲 曹桂州 +1 位作者 张洋洋 乐丽琴 《电讯技术》 北大核心 2024年第8期1187-1194,共8页
为提高多场景环境下的海上船舶目标识别的准确率,提出了一种基于小样本元学习网络的海上船舶识别算法。首先,利用一组共享权重的卷积神经网络VGG-16和Swin Transformer网络将海上船舶图片映射到深度全局和局部特征空间,构造多尺度特征;... 为提高多场景环境下的海上船舶目标识别的准确率,提出了一种基于小样本元学习网络的海上船舶识别算法。首先,利用一组共享权重的卷积神经网络VGG-16和Swin Transformer网络将海上船舶图片映射到深度全局和局部特征空间,构造多尺度特征;然后,借助船舶图片的真实mask分离目标船只的前景和背景,并利用一种粗细结合的语义学习策略获取前景和背景区域中目标的类特定语义表示;最后,利用一种无参数的度量学习计算所学类特定语义表示与查询图片中目标映射特征之间的相似度,根据相似度值预测目标特征图对应的目标区域。通过在构建的远洋船舶数据集和开源数据集HRSC2016上进行测试,所提模型分别可以实现81.64%和78.93%的平均交并比(Mean Intersection over Union, mIoU),相比主流的海上船舶识别模型具有更好的性能。 展开更多
关键词 船舶识别 小样本学习 Swin Transformer 度量学习 多尺度特征
下载PDF
基于视觉-语言预训练模型的零样本迁移学习方法综述
4
作者 孙仁科 许靖昊 +2 位作者 皇甫志宇 李仲年 许新征 《计算机工程》 CAS CSCD 北大核心 2024年第10期1-15,共15页
近年来随着人工智能(AI)技术在计算机视觉与自然语言处理等单模态领域表现出愈发优异的性能,多模态学习的重要性和必要性逐渐展现出来,其中基于视觉-语言预训练模型的零样本迁移(ZST)方法得到了国内外研究者的广泛关注。得益于预训练模... 近年来随着人工智能(AI)技术在计算机视觉与自然语言处理等单模态领域表现出愈发优异的性能,多模态学习的重要性和必要性逐渐展现出来,其中基于视觉-语言预训练模型的零样本迁移(ZST)方法得到了国内外研究者的广泛关注。得益于预训练模型强大的泛化性能,使用视觉-语言预训练模型不仅能提高零样本识别任务的准确率,而且能够解决部分传统方法无法解决的零样本下游任务问题。对基于视觉-语言预训练模型的ZST方法进行概述,首先介绍了零样本学习(FSL)的传统方法,并对其主要形式加以总结;然后阐述了基于视觉-语言预训练模型的ZST和FSL的区别及其可以解决的新任务;其次介绍了基于视觉-语言预训练模型的ZST方法在样本识别、目标检测、语义分割、跨模态生成等下游任务中的应用情况;最后对现有的基于视觉-语言预训练模型的ZST方法存在的问题进行分析并对未来的研究方向进行展望。 展开更多
关键词 样本学习 视觉-语言预训练模型 样本迁移 多模态 计算机视觉
下载PDF
基于拉格朗日对偶的小样本学习隐私保护和公平性约束方法
5
作者 王静红 田长申 +1 位作者 李昊康 王威 《计算机科学》 CSCD 北大核心 2024年第7期405-412,共8页
小样本学习旨在利用少量数据训练并大幅提升模型效用,为解决敏感数据在神经网络模型中的隐私与公平问题提供了重要方法。在小样本学习中,由于小样本数据集中往往包含某些敏感数据,并且这些敏感数据可能有歧视性,导致数据在神经网络模型... 小样本学习旨在利用少量数据训练并大幅提升模型效用,为解决敏感数据在神经网络模型中的隐私与公平问题提供了重要方法。在小样本学习中,由于小样本数据集中往往包含某些敏感数据,并且这些敏感数据可能有歧视性,导致数据在神经网络模型的训练中存在隐私泄露的风险和公平性问题。此外,在许多领域中,由于隐私或安全等,数据很难或无法获取。同时在差分隐私模型中,噪声的引入不仅会导致模型效用的降低,也会引起模型公平性的失衡。针对这些挑战,提出了一种基于Rényi差分隐私过滤器的样本级自适应隐私过滤算法,利用Rényi差分隐私以实现对隐私损失的更精确计算。进一步,提出了一种基于拉格朗日对偶的隐私性和公平性约束算法,该算法通过引入拉格朗日方法,将差分隐私约束和公平性约束加到目标函数中,并引入拉格朗日乘子来平衡这些约束。利用拉格朗日乘子法将目标函数转化为对偶问题,从而实现同时优化隐私性和公平性,通过拉格朗日函数实现隐私性和公平性的平衡。实验结果证明,该方法既提升了模型性能,又保证了模型的隐私性和公平性。 展开更多
关键词 小样本学习 隐私与公平 Rényi差分隐私 公平性约束 拉格朗日对偶
下载PDF
小样本学习驱动的无线频谱状态感知
6
作者 申滨 李月 +1 位作者 王欣 王紫昕 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第4期1231-1239,共9页
无线频谱状态感知是实现无线频谱资源高效利用及各种用频系统和谐共存的先决条件之一。针对复杂无线传播环境下获取的频谱观测往往存在数据稀疏性、数据类别分布不稳定、标记数据严重不足的情况,该文提出基于插值和小样本学习(FSL)分类... 无线频谱状态感知是实现无线频谱资源高效利用及各种用频系统和谐共存的先决条件之一。针对复杂无线传播环境下获取的频谱观测往往存在数据稀疏性、数据类别分布不稳定、标记数据严重不足的情况,该文提出基于插值和小样本学习(FSL)分类的无线频谱状态感知方法。首先,对捕获的稀疏频谱观测数据插值,构建频谱状态地图,作为频谱状态分类器的输入数据。其次,针对频谱数据类别分布不稳定、数据量严重不足的问题,基于小样本学习方法,利用嵌入模块和度量模块协同工作,以实现快速精确的频谱状态分类。具体地,利用嵌入模块将频谱数据映射到嵌入空间,提取频谱数据中的隐含特征;在度量模块的设计中,分别提出基于原型和基于样例的两种类别表示方式,通过计算待分类样本与类别之间的相似度判断待分类样本类别。最后,为了确保分类模型克服测试样本数量少导致过拟合问题,设置A-way B-shot任务训练模型。仿真结果表明,与传统机器学习方法相比,本文模型可以在低信噪比条件下进行精准分类;同时,在测试集样本数很少的情况下,或者在测试集中出现在训练集从未见到的新类时,所训练的模型也可以精准快速判别无线频谱的场景类别。 展开更多
关键词 频谱状态感知 频谱状态地图 插值 小样本学习
下载PDF
基于提示学习和超球原型的小样本ICD自动编码方法
7
作者 徐春 吉双焱 马志龙 《计算机应用研究》 CSCD 北大核心 2024年第9期2670-2677,共8页
针对国际疾病分类(ICD)自动编码方法的长文本处理、编码的层次结构以及长尾分布等导致的模型泛化能力弱的问题,提出一种充分利用医学预训练语言模型的基于提示学习和超球原型的小样本ICD自动编码方法(hypersphere prototypical with pro... 针对国际疾病分类(ICD)自动编码方法的长文本处理、编码的层次结构以及长尾分布等导致的模型泛化能力弱的问题,提出一种充分利用医学预训练语言模型的基于提示学习和超球原型的小样本ICD自动编码方法(hypersphere prototypical with prompt learning,PromptHP)。首先,将编码描述与临床文本融合进提示学习模型中的提示模板,使得模型能够更加深入地理解临床文本;然后,充分利用预训练语言模型的先验知识进行初始预测;接着,在预训练语言模型输出表示的基础上引入超球原型进行类别建模和度量分类,并在医学数据集上微调网络,充分纳入数据知识,提高模型在小样本ICD编码分配任务上的性能;最后,对以上两部分预测结果集成加权获得最终编码预测结果。在公开医学数据集MIMIC-Ⅲ上的实验结果表明,该模型优于最先进的基线方法,PromptHP将小样本编码的macro-AUC、micro-AUC、macro-F_(1)和micro-F_(1)分别提高了1.77%、1.54%、14.22%、15.01%。实验结果验证了该模型在小样本编码分类任务中的有效性。 展开更多
关键词 自动ICD编码 小样本学习 提示学习 超球原型 预训练语言模型
下载PDF
基于元学习的小样本语义分割算法
8
作者 王兰忠 牟昌善 《江苏大学学报(自然科学版)》 CAS 北大核心 2024年第5期574-580,620,共8页
针对现有的小样本语义分割模型对未知新类分割精度不高的问题,提出一种基于元学习的小样本语义分割算法.首先,利用深度可分离卷积改进传统主干网络,并在ImageNet数据集上进行了编码器的预训练.其次,利用预训练的主干网络将支持图片和查... 针对现有的小样本语义分割模型对未知新类分割精度不高的问题,提出一种基于元学习的小样本语义分割算法.首先,利用深度可分离卷积改进传统主干网络,并在ImageNet数据集上进行了编码器的预训练.其次,利用预训练的主干网络将支持图片和查询图片映射到深度特征空间.最后,利用支持图片的真实掩码将支持特征分离为目标前景和背景,并借助vision transformer构造了一种自适应的元学习分类器.在PASCAL-5^(i)数据集上进行了大量的试验.结果表明:所提出模型在VGG-16、ResNet-50和ResNet-101主干网络上分别实现了47.1%、58.3%和60.4%的mIoU(即平均交并比)(1 shot),同时在5 shot设定下实现了49.6%、60.2%和62.1%的mIoU;在COCO-20^(i)数据集上实现了23.6%、30.3%和30.7%的mIoU(1 shot),同时在5 shot设定下实现了30.1%、34.7%和35.2%的mIoU. 展开更多
关键词 小样本语义分割 特征分离 学习 深度可分离卷积 vision transformer 目标前景 自适应
下载PDF
基于图神经网络的小样本学习方法研究进展 被引量:3
9
作者 杨洁祎 董一鸿 钱江波 《计算机研究与发展》 EI CSCD 北大核心 2024年第4期856-876,共21页
小样本学习(few-shot learning,FSL)旨在利用少量样本学习得到解决问题的模型,为解决应用场景中样本量少或标注样本少的问题.图神经网络(graph neural network,GNN)由于其在许多应用中的卓越性能引起了极大的关注,许多学者开始尝试利用... 小样本学习(few-shot learning,FSL)旨在利用少量样本学习得到解决问题的模型,为解决应用场景中样本量少或标注样本少的问题.图神经网络(graph neural network,GNN)由于其在许多应用中的卓越性能引起了极大的关注,许多学者开始尝试利用图神经网络进行小样本学习,基于图神经网络的方法在小样本领域取得了卓越的成绩.目前与基于图神经网络的小样本学习方法相关的综述性研究较少,缺乏该类方法的划分体系与介绍性工作,因此系统地梳理了当前基于图神经网络的小样本学习的相关工作:概括了小样本学习的图神经网络方法的概念,根据模型的基本思想将其划分为基于节点特征、基于边特征、基于节点对特征和基于类级特征的4类方法,介绍了这4类方法的研究进展;总结了目前常用的小样本数据集和代表性模型在这些数据集上的实验结果,归纳各类方法主要的研究内容和优劣势;最后概述了基于图神经网络的小样本学习方法的应用和面临的挑战,并展望其未发展方向. 展开更多
关键词 小样本学习 图神经网络 学习 度量学习 迁移学习
下载PDF
基于跨域小样本学习的SAR图像目标识别方法 被引量:1
10
作者 史松昊 王晓丹 +1 位作者 杨春晓 王艺菲 《计算机科学》 CSCD 北大核心 2024年第S01期453-459,共7页
由于SAR图像获取难度大,可供研究的样本数量较少,解决有限样本条件下SAR图像目标识别问题成为业界公认的挑战。随着深度学习在计算机视觉领域的发展,衍生出了多种小样本图像分类方法,因此考虑采用跨域小样本学习范式解决小样本SAR图像... 由于SAR图像获取难度大,可供研究的样本数量较少,解决有限样本条件下SAR图像目标识别问题成为业界公认的挑战。随着深度学习在计算机视觉领域的发展,衍生出了多种小样本图像分类方法,因此考虑采用跨域小样本学习范式解决小样本SAR图像目标识别问题。具体地,先在多个源域中训练得到不同域的特征提取器,而后通过知识蒸馏的方法获取一个通用的特征提取器,这里采用中心核对齐的方法,将提取的特征映射到一个更高维的空间,从而更好地区分原特征之间的非线性相似性;通过上一阶段获得的通用特征提取器提取目标域图像特征,最后采用原型网络的方法预测样本的类别。实验证明,该方法在缩减模型参数的同时,获得了88.61%的准确率,为解决小样本SAR图像目标识别问题提供了新的思路。 展开更多
关键词 深度学习 学习 跨域小样本学习 SAR图像目标识别 知识蒸馏
下载PDF
基于知识增强和提示学习的小样本新闻主题分类方法 被引量:1
11
作者 余新言 曾诚 +2 位作者 王乾 何鹏 丁晓玉 《计算机应用》 CSCD 北大核心 2024年第6期1767-1774,共8页
基于预训练微调的分类方法通常需要大量带标注的数据,导致无法应用于小样本分类任务。因此,针对中文小样本新闻主题分类任务,提出一种基于知识增强和提示学习的分类方法KPL(Knowledge enhancement and Prompt Learning)。首先,利用预训... 基于预训练微调的分类方法通常需要大量带标注的数据,导致无法应用于小样本分类任务。因此,针对中文小样本新闻主题分类任务,提出一种基于知识增强和提示学习的分类方法KPL(Knowledge enhancement and Prompt Learning)。首先,利用预训练模型在训练集上学习最优的提示模板;其次,将提示模板与输入文本结合,使分类任务转化为完形填空任务;同时利用外部知识扩充标签词空间,丰富标签词的语义信息;最后,对预测的标签词与原始的标签进行映射。通过在THUCNews、SHNews和Toutiao这3个新闻数据集上进行随机采样,形成小样本训练集和验证集进行实验。实验结果表明,所提方法在上述数据集上的1-shot、5-shot、10-shot和20-shot任务上整体表现有所提升,尤其在1-shot任务上提升效果突出,与基线小样本分类方法相比,准确率分别提高了7.59、2.11和3.10个百分点以上,验证了KPL在小样本新闻主题分类任务上的有效性。 展开更多
关键词 新闻主题分类 提示学习 知识增强 小样本学习 文本分类
下载PDF
少样本下基于元学习的柱塞泵故障诊断方法 被引量:1
12
作者 胡宏俊 杨喜旺 黄晋英 《中北大学学报(自然科学版)》 CAS 2024年第5期592-600,共9页
针对柱塞泵故障样本少、在噪声干扰下故障信号微弱及传统深度学习依赖大量训练样本的问题,提出了一种基于模型不可知元学习(MAML)的少样本柱塞泵故障诊断方法。首先,利用改进的带自适应噪声的完全集成经验模态分解(ICEEMDAN)方法来分解... 针对柱塞泵故障样本少、在噪声干扰下故障信号微弱及传统深度学习依赖大量训练样本的问题,提出了一种基于模型不可知元学习(MAML)的少样本柱塞泵故障诊断方法。首先,利用改进的带自适应噪声的完全集成经验模态分解(ICEEMDAN)方法来分解采集到的一维振动信号,得到本征模态函数的IMF分量,并筛选故障信息丰富的敏感分量以增强振动信号中的特征信息。其次,建立了多通道一维卷积模型,该模型构建了一个具有高效通道注意力机制的通道交互特征编码器,旨在关注不同通道间的交互故障信息,进而有效地提取多个诊断元任务的通用诊断知识。最后,将一维卷积模型作为基模型,并通过MAML方法训练获得了最优的模型初始化参数;最优的初始化模型能够快速适应新工况下的少量柱塞泵故障样本,从而实现了少样本下的柱塞泵故障诊断。利用柱塞泵实验数据验证了模型的性能,结果表明,所提方法在少样本条件下对于各种诊断任务的诊断准确率都达到90%以上。 展开更多
关键词 模型不可知元学习 样本 注意力机制 柱塞泵
下载PDF
基于特征变换和度量网络的小样本学习算法
13
作者 王多瑞 杜杨 +2 位作者 董兰芳 胡卫明 李兵 《自动化学报》 EI CAS CSCD 北大核心 2024年第7期1305-1314,共10页
在小样本分类任务中,每个类别可供训练的样本数量非常有限.因此在特征空间中同类样本分布稀疏,异类样本间边界模糊.提出一种新的基于特征变换和度量网络(Feature transformation and metric networks,FTMN)的小样本学习算法用于小样本... 在小样本分类任务中,每个类别可供训练的样本数量非常有限.因此在特征空间中同类样本分布稀疏,异类样本间边界模糊.提出一种新的基于特征变换和度量网络(Feature transformation and metric networks,FTMN)的小样本学习算法用于小样本分类任务.算法通过嵌入函数将样本映射到特征空间,并计算输入该样本与所属类别中心的特征残差.构造一个特征变换函数对该残差进行学习,使特征空间内的样本特征经过该函数后向同类样本中心靠拢.利用变换后的样本特征更新类别中心,使各类别中心间的距离增大.算法进一步构造了一种新的度量函数,对样本特征中每个局部特征点的度量距离进行联合表达,该函数能够同时对样本特征间的夹角和欧氏距离进行优化.算法在小样本分类任务常用数据集上的优秀表现证明了算法的有效性和泛化性. 展开更多
关键词 特征变换 度量学习 小样本学习 残差学习
下载PDF
基于元学习的图卷积网络少样本学习模型
14
作者 刘鑫磊 冯林 +3 位作者 廖凌湘 龚勋 苏菡 王俊 《电子学报》 EI CAS CSCD 北大核心 2024年第3期885-897,共13页
少样本学习是目前机器学习研究领域的热点和难点.针对现有的少样本学习模型不能有效捕捉数据特征与数据标签之间的联系,造成分类模型泛化能力弱的问题,提出一种基于元学习的原型空间图卷积网络少样本学习模型FSL-GCNPS(Few-Shot Learnin... 少样本学习是目前机器学习研究领域的热点和难点.针对现有的少样本学习模型不能有效捕捉数据特征与数据标签之间的联系,造成分类模型泛化能力弱的问题,提出一种基于元学习的原型空间图卷积网络少样本学习模型FSL-GCNPS(Few-Shot Learning of Graph Convolutional Network on Prototype Space).首先,利用卷积神经网络提取多任务数据的特征向量;其次,为了将特征向量映射到原型空间中,根据元学习的训练策略得到特征向量的类原型表达;然后,通过类原型向量和类向量之间的嵌入表示,构建图结构数据,并进行图卷积网络训练、推理.实验结果表明,相较于经典少样本学习方法,FSL-GCNPS模型拥有更好的分类准确率和分类稳定性.同时,在医学图像领域数据集上实验表明,FSL-GCNPS具有很好的跨域适应性. 展开更多
关键词 学习 图卷积网络 卷积神经网络 样本学习 原型空间
下载PDF
基于全局对抗负样本的图对比学习方法
15
作者 岑科廷 沈华伟 +2 位作者 曹婍 徐冰冰 程学旗 《中文信息学报》 CSCD 北大核心 2024年第1期65-73,85,共10页
图对比学习在无监督节点表示方面取得了巨大成功。该类模型旨在通过拉近同一节点对应的不同增强节点的表示(正样本),推远不同节点的表示(负样本)的方式为每个节点学习表示。其中负样本的选择是图对比学习的一个关键。现有的方法通过随... 图对比学习在无监督节点表示方面取得了巨大成功。该类模型旨在通过拉近同一节点对应的不同增强节点的表示(正样本),推远不同节点的表示(负样本)的方式为每个节点学习表示。其中负样本的选择是图对比学习的一个关键。现有的方法通过随机采样或者根据一些启发式的重要性度量标准为每个节点选择对应的负样本。然而上述方法并不能准确地找到对模型关键的负样本。同时,由于需要为每一个节点选取其对应的负样本,导致高昂的时间开销。为了解决上述问题,该文提出通过对抗学习的方式,为所有节点学习一个全局共享的关键的负样本。在多个基准数据集上的实验结果证明了该方法的效率和有效性。 展开更多
关键词 图表示学习 图对比学习 对抗负样本 全局负样本
下载PDF
基于样本信息熵辅助的深度强化学习抗干扰策略
16
作者 李刚 吴麒 +4 位作者 王翔 罗皓 李良鸿 景小荣 陈前斌 《通信学报》 EI CSCD 北大核心 2024年第9期115-128,共14页
针对深度强化学习驱动的智能化干扰,提出了一种基于样本信息熵辅助的通信抗干扰策略。首先,基于神经网络对抗干扰策略网络和熵预测网络进行设计;接着,利用短时傅里叶变换对接收信号处理所形成的频谱瀑布图作为样本,对抗干扰策略网络和... 针对深度强化学习驱动的智能化干扰,提出了一种基于样本信息熵辅助的通信抗干扰策略。首先,基于神经网络对抗干扰策略网络和熵预测网络进行设计;接着,利用短时傅里叶变换对接收信号处理所形成的频谱瀑布图作为样本,对抗干扰策略网络和信息熵预测网络进行训练;之后,利用信息熵预测网络对抗干扰策略网络的训练样本进行精细化筛选,以提高训练样本的质量,最终提高抗干扰策略的在线决策能力和泛化性能。仿真结果表明,在干扰方干扰策略更新频率不超过通信方40倍且最大干扰通道数为3的极端条件下,基于样本信息熵辅助的通信抗干扰策略仍可取得至少61%的成功率;同时,与其他几种对比抗干扰策略相比,所提通信抗干扰策略具有更快的收敛速度。 展开更多
关键词 抗干扰 深度强化学习 样本信息熵 智能干扰
下载PDF
基于对比学习的小样本金属表面损伤分类
17
作者 吴冠荣 李元祥 +2 位作者 王艺霖 陆雨寒 陈秀华 《计算机工程》 CAS CSCD 北大核心 2024年第3期36-43,共8页
现有小样本分类方法局限于从每轮支持信息中归纳出类内共性,忽略了在迭代过程中类间关联性以及样本本身携带的类别信息。由于金属损伤纹理细微、多变,因此所形成的特征分布类间距离小、类内距离大。因特征分布聚合性差导致小样本分类性... 现有小样本分类方法局限于从每轮支持信息中归纳出类内共性,忽略了在迭代过程中类间关联性以及样本本身携带的类别信息。由于金属损伤纹理细微、多变,因此所形成的特征分布类间距离小、类内距离大。因特征分布聚合性差导致小样本分类性能降低且新类泛化性变差,提出一种基于内外双层训练模型架构的小样本金属表面损伤分类方法。内模型在利用度量手段完成元分类任务的同时,引入双模态特征作为外模型特征空间的信号,即在新映射空间下利用类别标签信息有监督地对比不同类别的图像特征、优化特征分布,使类间区分度更大、类内聚合度更高。在训练阶段中外模型反传对比损失,间接加强原有特征空间的表征能力,从而提高内模型的度量水平,提升分类精度。同时,利用类别嵌入作为动态类别中心,可以有效减少小样本问题中的噪声干扰,加强模型泛化性能。在GC10、NEU及APSD 3个常用的金属损伤数据集上的实验结果表明,相比ProtoNet、MatchingNet、RelationNet等主流方法,该方法具有较优的分类精度,特别是新类别的泛化能力得到大幅提升,5-way 5-shot设定下分类精度至少提高了5.24、1.39和6.37个百分点,分类错误下降率分别为36.00%、17.94%和66.15%;此外,新类分类精度分别从36.53%、82.43%、31.89%提升至69.12%、91.57%、48.23%。5-way 1-shot设定下分类精度分别至少提高8.34、3.01和4.61个百分点,分类错误下降率分别为28.32%、23.37%和46.57%。 展开更多
关键词 金属表面损伤 对比学习 度量学习 学习 小样本分类
下载PDF
基于小样本学习的滚动轴承故障检测
18
作者 曹荧荧 郇战 +1 位作者 陈震 陈瑛 《数据采集与处理》 CSCD 北大核心 2024年第4期1033-1042,共10页
轴承故障类型复杂,并且在不同工况下每种故障类型都很难获得足够的训练样本。因此,本文提出一种基于深度神经网络的小样本学习分类算法,引入第1层具有宽卷积核网络(Convolutional neural network with training interference,TICNN)作... 轴承故障类型复杂,并且在不同工况下每种故障类型都很难获得足够的训练样本。因此,本文提出一种基于深度神经网络的小样本学习分类算法,引入第1层具有宽卷积核网络(Convolutional neural network with training interference,TICNN)作为孪生网络的子网络用于提取特征,减少工业环境噪声影响。孪生网络是一种常用于小样本学习的结构,通过输入相同或不同类别的样本对进行训练,学习不同属性样本与特征之间的映射关系,并采用相似度进行度量。测试样本通过寻找最近邻的类别来实现分类。在标准凯斯西储大学轴承故障诊断基准数据集上的实验结果表明,在数据有限的情况下,本文模型在故障诊断中表现出更好的效果。当使用最少的训练数据在不同的噪声环境中进行测试时,本文小样本学习模型的性能超过了具有合理噪声水平的基线模型,故障诊断准确率达到了94.41%。当在具有新故障类型或新工作条件的测试集上进行评估时,本文模型仍然有效。 展开更多
关键词 滚动轴承故障分类 小样本学习 孪生网络 有限样本 卷积神经网络
下载PDF
面向小样本学习的轻量化知识蒸馏
19
作者 陈嘉言 任东东 +2 位作者 李文斌 霍静 高阳 《软件学报》 EI CSCD 北大核心 2024年第5期2414-2429,共16页
小样本学习旨在模拟人类基于少数样例快速学习新事物的能力,对解决样本匮乏情境下的深度学习任务具有重要意义.但是,在诸多计算资源有限的现实任务中,模型规模仍可能限制小样本学习的广泛应用.这对面向小样本学习的轻量化任务提出了现... 小样本学习旨在模拟人类基于少数样例快速学习新事物的能力,对解决样本匮乏情境下的深度学习任务具有重要意义.但是,在诸多计算资源有限的现实任务中,模型规模仍可能限制小样本学习的广泛应用.这对面向小样本学习的轻量化任务提出了现实的需求.知识蒸馏作为深度学习领域广泛使用的辅助策略,通过额外的监督信息实现模型间知识迁移,在提升模型精度和压缩模型规模方面都有实际应用.首先验证知识蒸馏策略在小样本学习模型轻量化中的有效性.并结合小样本学习任务的特点,针对性地设计两种新的小样本蒸馏方法:(1)基于图像局部特征的蒸馏方法;(2)基于辅助分类器的蒸馏方法.在miniImageNet和TieredImageNet数据集上的相关实验证明所设计的新的蒸馏方法相较于传统知识蒸馏在小样本学习任务上具有显著优越性. 展开更多
关键词 深度学习 小样本学习 图像识别 知识蒸馏 模型轻量化
下载PDF
基于空间注意力增强ResNeSt-101网络和迁移元学习的小样本害虫分类
20
作者 梁炜健 郭庆文 +2 位作者 王春桃 肖德琴 黄琼 《农业工程学报》 EI CAS CSCD 北大核心 2024年第6期285-297,共13页
害虫识别是害虫防治的关键基础,由于较难获得足够的害虫种类图像,如何使用少量标记图像构造害虫分类器是一个富有挑战性的问题。现有研究多采用匹配网络框架来解决这个问题,该框架使用元学习避免重新训练深度网络,然而主干网络的特征提... 害虫识别是害虫防治的关键基础,由于较难获得足够的害虫种类图像,如何使用少量标记图像构造害虫分类器是一个富有挑战性的问题。现有研究多采用匹配网络框架来解决这个问题,该框架使用元学习避免重新训练深度网络,然而主干网络的特征提取能力有限,元学习算法没有提供较好的权重初始化策略,可能导致网络出现梯度消失或者梯度爆炸的情况。为了解决这一问题,该研究提出一种基于空间注意力增强ResNeSt-101和迁移元学习算法的小样本害虫分类器。首先,通过一个空间注意力模块增强ResNeSt-101以更好地提取害虫图像特征,即在ResNeSt-101的第1阶段的最大池化层之前以及在第2~4阶段的末尾分别附加集成空间注意力模块,并通过数值仿真确定空间注意力增强模块的最佳放置位置为第1阶段的最大池化层之前。随后,通过迁移学习策略初始化网络权重,进而通过元学习进行优化。为了避免网络出现梯度消失或者梯度爆炸的情况,在元学习算法中选择归一化的温度缩放交叉熵损失函数代替三元组损失函数。最后,通过计算查询图像和支持图像深度特征之间的相似度实现害虫分类。所提出方法在自建的害虫图像数据集AD0和MIP50上使用N-类K-例准确率和每张图像处理时间(the time of per image processing,TPIP)进行评估。害虫图像数据集的构建方式如下:首先对公共害虫图像数据集IP102和D0进行清洗,以消除由于英文害虫名称导致的歧义类别;然后移除卵、幼虫和蛹阶段的害虫图像,仅保留成虫阶段的图像。考虑到人工和时间成本,从清理后的IP102害虫数据集中选择50个类别构建MIP50害虫图像数据集。随后,通过害虫的拉丁名称从互联网搜索更多的害虫图像,生成AD0害虫图像数据集。自建的MIP50数据集包括来自IP102的50个类别的16424张成虫图像,AD0包含来自D0的所有40个类别的17112张成虫图像。试验结果表明,当测试集中只有少数未知类别的害虫图像时,本文方法在AD0数据集上的5-类10-例评估准确率达到了96.37%,在MIP50数据集上达到了76.91%。当测试集中同时存在几个未知和已知类别的害虫图像时,所提方法在AD0数据集上的5-类10-例设置下的识别准确率达到了93.73%,在MIP50数据集上达到90.60%。同时,本文方法的TPIP大约为0.44 ms,满足大多数场景下的实时害虫识别要求。此外,消融试验结果表明,基于空间注意力增强ResNeSt-101网络和迁移元学习的小样本害虫分类方法在AD0、MIP50数据集上对未知类别害虫图像的5-类10-例的识别准确率分别提升了5和3个百分点以上,具有良好应用前景。但未来研究中还需进一步研究本方法中存在的问题,如通过采用更好地表征支持集样本与查询集样本之间复杂关系的度量优化本工作中用到的度量以解决增加类别数可能导致分类准确率降低的问题,以及将所提方法应用于现实农业场景进行优化改进以更好提升本文方法的实用性。 展开更多
关键词 病虫害 图像处理 小样本分类 学习 ResNeSt-101 交叉熵损失
下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部