Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and mai...Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.展开更多
Two properties are given in this paper about the scaling function: suppose Vj; j ∈ Z is a multiresolution analysis with a continuous scaling function φ which have compact support set and that φ the Fourier transfor...Two properties are given in this paper about the scaling function: suppose Vj; j ∈ Z is a multiresolution analysis with a continuous scaling function φ which have compact support set and that φ the Fourier transform of φ is a continuous real function, compactly supported, then φ(0) ≠ 0 and when supp φ = [a1,b1]∪[a2,b2](b1 < a2,0 < a2), then we havea1 ≤ 0, 0 < b1, a1 < b2/2 ≤ b1, 2π < b2 - a1 ≤ 8π.展开更多
On the basis of a thorough understanding of the physical characteristics of remote sensing image, this paper employs the theories of wavelet transform and signal sampling to develop a new image fusion algorithm. The a...On the basis of a thorough understanding of the physical characteristics of remote sensing image, this paper employs the theories of wavelet transform and signal sampling to develop a new image fusion algorithm. The algorithm has been successfully applied to the image fusion of SPOT PAN and TM of Guangdong province, China. The experimental results show that a perfect image fusion can be built up by using the image analytical solution and re-construction in the image frequency domain based on the physical characteristics of the image formation. The method has demonstrated that the results of the image fusion do not change spectral characteristics of the original image.展开更多
This paper introduces the basic viewpoints and characteristics of Bayesian statistics. Which provides a theoretical basis for solving the problem of small sample of flight simulator using Bayesian method. A series of ...This paper introduces the basic viewpoints and characteristics of Bayesian statistics. Which provides a theoretical basis for solving the problem of small sample of flight simulator using Bayesian method. A series of formulas were derived to establish the Bayesian reliability modeling and evaluation model for flight simulation equipment. The two key problems of Bayesian method were pointed out as follows: obtaining the prior distribution of WeibuU parameter, calculating the parameter a posterior distribution and parameter estimation without analytic solution, and proposing the corresponding solution scheme.展开更多
Recently, near infrared reflectance (NIR) and mid-infrared (MIR) spectroscopy techniques are increasingly introduced as convenient and simple non-destructive techniques for quantifying several soil properties. Thi...Recently, near infrared reflectance (NIR) and mid-infrared (MIR) spectroscopy techniques are increasingly introduced as convenient and simple non-destructive techniques for quantifying several soil properties. This study uses MIR method to predict pH, soil organic C, total N, AI, Ca, Mg and K, CEC and soil texture for soil samples collected in Sud-Kivu, Congo. A total of 536 composite soil samples were taken from two locations (Burhale and Luhihi) at two depths (0-20 cm and 20-40 cm) using a spatially-stratified random sampling design within an area of 200 km2. Differences in characteristics were evaluated between the two locations, land use (cultivated vs. non-cultivated land) with soil depths. A random subset of the samples (10%) were analyzed using standard wet chemistry methods, and calibration models developed by MIR data to estimate soil properties for the full soil sample set. Partial least squares regression (PLS) method gave acceptable coefficients of determination between 0.71 and 0.93 for all parameters. Soil organic matter levels were higher in cultivated plots in Luhihi (3.9% C) than in Burhale (3.0% C), suggesting lower levels of soil fertility in the later area. This indicates high levels of acidity, which are likely to limit crop production in the area. Phosphorus deficiency is acute in Burhale (2.4 mg P/kg) but less in Luhihi (5.4 mg P/kg). In both locations, low levels of Ca and Mg indicate that soils may be susceptible to deficiencies in both elements.These findings provide new opportunities for monitoring soil quality in the region which can benefit multiple actors and scientists involved in the agricultural and environmental sectors.展开更多
This paper addresses the learning algorithm on the unit sphere.The main purpose is to present an error analysis for regression generated by regularized least square algorithms with spherical harmonics kernel.The exces...This paper addresses the learning algorithm on the unit sphere.The main purpose is to present an error analysis for regression generated by regularized least square algorithms with spherical harmonics kernel.The excess error can be estimated by the sum of sample errors and regularization errors.Our study shows that by introducing a suitable spherical harmonics kernel,the regularization parameter can decrease arbitrarily fast with the sample size.展开更多
This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is cons...This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is constructed according to Hamilton’s principle, and the element by element algorithm is parallelly executed on graphics processing unit (GPU) using compute unified device architecture (CUDA) to get the responses in full wave field accurately. By means of the Fourier spectral analysis method,the Mindlin plate theory is selected for wave modeling of laminated composite plates while the Kirchhoff plate theory predicts unreasonably phase and group velocities. Numerical examples involving wave propagation in laminated composite plates without and with crack are performed and discussed in detail. The parallel implementation on GPU is accelerated 146 times comparing with the same wave motion problem executed on central processing unit (CPU). The validity and accuracy of the proposed parallel implementation are also demonstrated by comparing with conventional finite element method (FEM) and the computation time has been reduced from hours to minutes. The damage size and location have been successfully determined according to wave propagation results based on delay-and-sum (DAS). The results show that the proposed parallel implementation of wavelet finite element method (WFEM) is very appropriate and efficient for wave-based SHM in laminated composite plates.展开更多
基金Project(2017G006-N)supported by the Project of Science and Technology Research and Development Program of China Railway Corporation。
文摘Cable-stayed bridges have been widely used in high-speed railway infrastructure.The accurate determination of cable’s representative temperatures is vital during the intricate processes of design,construction,and maintenance of cable-stayed bridges.However,the representative temperatures of stayed cables are not specified in the existing design codes.To address this issue,this study investigates the distribution of the cable temperature and determinates its representative temperature.First,an experimental investigation,spanning over a period of one year,was carried out near the bridge site to obtain the temperature data.According to the statistical analysis of the measured data,it reveals that the temperature distribution is generally uniform along the cable cross-section without significant temperature gradient.Then,based on the limited data,the Monte Carlo,the gradient boosted regression trees(GBRT),and univariate linear regression(ULR)methods are employed to predict the cable’s representative temperature throughout the service life.These methods effectively overcome the limitations of insufficient monitoring data and accurately predict the representative temperature of the cables.However,each method has its own advantages and limitations in terms of applicability and accuracy.A comprehensive evaluation of the performance of these methods is conducted,and practical recommendations are provided for their application.The proposed methods and representative temperatures provide a good basis for the operation and maintenance of in-service long-span cable-stayed bridges.
文摘Two properties are given in this paper about the scaling function: suppose Vj; j ∈ Z is a multiresolution analysis with a continuous scaling function φ which have compact support set and that φ the Fourier transform of φ is a continuous real function, compactly supported, then φ(0) ≠ 0 and when supp φ = [a1,b1]∪[a2,b2](b1 < a2,0 < a2), then we havea1 ≤ 0, 0 < b1, a1 < b2/2 ≤ b1, 2π < b2 - a1 ≤ 8π.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .40 0 2 30 0 4 ) .
文摘On the basis of a thorough understanding of the physical characteristics of remote sensing image, this paper employs the theories of wavelet transform and signal sampling to develop a new image fusion algorithm. The algorithm has been successfully applied to the image fusion of SPOT PAN and TM of Guangdong province, China. The experimental results show that a perfect image fusion can be built up by using the image analytical solution and re-construction in the image frequency domain based on the physical characteristics of the image formation. The method has demonstrated that the results of the image fusion do not change spectral characteristics of the original image.
文摘This paper introduces the basic viewpoints and characteristics of Bayesian statistics. Which provides a theoretical basis for solving the problem of small sample of flight simulator using Bayesian method. A series of formulas were derived to establish the Bayesian reliability modeling and evaluation model for flight simulation equipment. The two key problems of Bayesian method were pointed out as follows: obtaining the prior distribution of WeibuU parameter, calculating the parameter a posterior distribution and parameter estimation without analytic solution, and proposing the corresponding solution scheme.
文摘Recently, near infrared reflectance (NIR) and mid-infrared (MIR) spectroscopy techniques are increasingly introduced as convenient and simple non-destructive techniques for quantifying several soil properties. This study uses MIR method to predict pH, soil organic C, total N, AI, Ca, Mg and K, CEC and soil texture for soil samples collected in Sud-Kivu, Congo. A total of 536 composite soil samples were taken from two locations (Burhale and Luhihi) at two depths (0-20 cm and 20-40 cm) using a spatially-stratified random sampling design within an area of 200 km2. Differences in characteristics were evaluated between the two locations, land use (cultivated vs. non-cultivated land) with soil depths. A random subset of the samples (10%) were analyzed using standard wet chemistry methods, and calibration models developed by MIR data to estimate soil properties for the full soil sample set. Partial least squares regression (PLS) method gave acceptable coefficients of determination between 0.71 and 0.93 for all parameters. Soil organic matter levels were higher in cultivated plots in Luhihi (3.9% C) than in Burhale (3.0% C), suggesting lower levels of soil fertility in the later area. This indicates high levels of acidity, which are likely to limit crop production in the area. Phosphorus deficiency is acute in Burhale (2.4 mg P/kg) but less in Luhihi (5.4 mg P/kg). In both locations, low levels of Ca and Mg indicate that soils may be susceptible to deficiencies in both elements.These findings provide new opportunities for monitoring soil quality in the region which can benefit multiple actors and scientists involved in the agricultural and environmental sectors.
基金supported by National Natural Science Foundation of China (Grant Nos. 61272023 and 61075054)
文摘This paper addresses the learning algorithm on the unit sphere.The main purpose is to present an error analysis for regression generated by regularized least square algorithms with spherical harmonics kernel.The excess error can be estimated by the sum of sample errors and regularization errors.Our study shows that by introducing a suitable spherical harmonics kernel,the regularization parameter can decrease arbitrarily fast with the sample size.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51421004 & 51405369)the National Key Basic Research Program of China (Grant No. 2015CB057400)+1 种基金the China Postdoctoral Science Foundation (Grant No. 2014M560766)the China Scholarship Council,and the Fundamental Research Funds for the Central Universities(Grant No. xjj2014107)
文摘This paper presents a novel parallel implementation technology for wave-based structural health monitoring (SHM) in laminated composite plates. The wavelet-based B-spline wavelet on he interval (BSWI) element is constructed according to Hamilton’s principle, and the element by element algorithm is parallelly executed on graphics processing unit (GPU) using compute unified device architecture (CUDA) to get the responses in full wave field accurately. By means of the Fourier spectral analysis method,the Mindlin plate theory is selected for wave modeling of laminated composite plates while the Kirchhoff plate theory predicts unreasonably phase and group velocities. Numerical examples involving wave propagation in laminated composite plates without and with crack are performed and discussed in detail. The parallel implementation on GPU is accelerated 146 times comparing with the same wave motion problem executed on central processing unit (CPU). The validity and accuracy of the proposed parallel implementation are also demonstrated by comparing with conventional finite element method (FEM) and the computation time has been reduced from hours to minutes. The damage size and location have been successfully determined according to wave propagation results based on delay-and-sum (DAS). The results show that the proposed parallel implementation of wavelet finite element method (WFEM) is very appropriate and efficient for wave-based SHM in laminated composite plates.