期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
半参数回归模型的累积法——非参数估计基于小波光滑
1
作者 胡宏昌 《湖北师范学院学报(自然科学版)》 2003年第3期16-19,共4页
考虑半参数回归模型yi=XTiβ +s(ti) +εi   (i=1 ,… ,n)其中噪声序列εi不独立。在非参数分量s(ti)基于小波光滑的情况下 ,用累积估计的方法 ,得到了参数 β和非参数s(ti)的估计量 ;
关键词 半参数回归模型 累积法 非参数估计 小波光滑 累积估计 独立分布 正态分布 最小二乘法
下载PDF
广义曲线回归的小波估计 被引量:1
2
作者 刘次华 《华中理工大学学报》 CSCD 北大核心 2000年第3期114-116,共3页
考虑广义回归模型 yi=g( ti) +εi,1≤ i≤n,其中 g(· )为 R上的未知函数 ,误差 εi 是均值为零的平稳序列 .利用线性小波光滑的方法 ,讨论了 g(· )的小波估计 g(· )的收敛性 .
关键词 广义曲线回发 小波估计 收敛性 线性小波光滑
下载PDF
回归函数的非参数分块Delta序列估计
3
作者 林路 《邵阳师范高等专科学校学报》 2001年第2期1-7,共7页
在非参数回归模型中,本文提出了一种回归函数的分块Delta序列估计方法,定义了回归函数的分块Delta序列估计,得到这种估计的渐近无偏性,均方收敛性和强性敛性。
关键词 分块方法 非参数回归模型 小波光滑 回归函数 非参数分块 Delta序列
下载PDF
SMOOTHING OF 1/F SIGNAL WITH ORTHOGONAL MULTIWAVELET
4
作者 Yan Xiaohong Zhang Taiyi Liu Feng 《Journal of Electronics(China)》 2006年第2期318-320,共3页
Based on the orthogonal multiwavelet model of 1/f signals, smoothing fractal signals from white Gaussian noise with multiwavelet filter is proposed. The proposed multiwavelet method is very simple and easy to realize.... Based on the orthogonal multiwavelet model of 1/f signals, smoothing fractal signals from white Gaussian noise with multiwavelet filter is proposed. The proposed multiwavelet method is very simple and easy to realize. Compared with Wornell's single wavelet method, the new method has r filtering factors at each scale and has higher filtering speed, where r is the multiplicity of multiwavelet. Also due to the advantages of multiwavelet, the multiwavelet method performs better than that of Wornell's. Simulation results verify the analysis, and Wornell's method is the special case of our method when r = 1. 展开更多
关键词 FRACTAL MULTIWAVELET FILTERING Signal-to-noise ratio
下载PDF
Supersmooth density estimations over L^p risk by wavelets
5
作者 LI Rui LIU YouMing 《Science China Mathematics》 SCIE CSCD 2017年第10期1901-1922,共22页
This paper studies wavelet estimations for supersmooth density functions with additive noises. We first show lower bounds of Lprisk(1 p < ∞) with both moderately and severely ill-posed noises. Then a Shannon wavel... This paper studies wavelet estimations for supersmooth density functions with additive noises. We first show lower bounds of Lprisk(1 p < ∞) with both moderately and severely ill-posed noises. Then a Shannon wavelet estimator provides optimal or nearly-optimal estimations over Lprisks for p 2, and a nearly-optimal result for 1 < p < 2 under both noises. In the nearly-optimal cases, the ratios of upper and lower bounds are determined. When p = 1, we give a nearly-optimal estimation with moderately ill-posed noise by using the Meyer wavelet. Finally, the practical estimators are considered. Our results are motivated by the work of Pensky and Vidakovic(1999), Butucea and Tsybakov(2008), Comte et al.(2006), Lacour(2006) and Lounici and Nickl(2011). 展开更多
关键词 wavelet estimation supersmooth density additive noise OPTIMALITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部