To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the s...To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.展开更多
A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of...A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of hydraulic flight simulator were decomposed by wavelet muhiresolution to get the information of different frequency bands. The reconstructed input-output data were used to build the model of hydraulic flight simulator with improved particle swarm optimization with mutation (IPSOM) to avoid the premature convergence of traditional optimization techniques effectively. Simulation results show that the proposed method is more precise than traditional system identification methods in operating frequency bands because of the consideration of design index of control system for identification.展开更多
Wavelet analysis and Mann-Kendall tests are employed to evaluate the variation in the East Asian summer monsoon(EASM) and hydrological variables in the Haihe River basin calculated by the Variable Infiltration Capac...Wavelet analysis and Mann-Kendall tests are employed to evaluate the variation in the East Asian summer monsoon(EASM) and hydrological variables in the Haihe River basin calculated by the Variable Infiltration Capacity model. The relationships between those variables and the EASM are also examined. The results indicate consistent 40 a periodic variation in both the hydrological variables and the EASM. The hydrologic variables show downward trends in the Haihe River basin over the past 60 years, especially in piedmont regions of the Taihang-Yan Mountains. The variables are closely related to the EASM, whose continuous weakening since the 1970 s has resulted in prolonged drought and severe water shortages in the basin. The periodicity of the EASM index was analyzed using continuous wavelet transform methods. We found the most significant periodic signal of the EASM is ~80 years; therefore, the EASM may reinforce and reach a maximum in the 2040 s, resulting in more precipitation and other impacts on basin water resources. Hydrologic variables in the basin in the 2040 s are predicted, and their spatial distributions in the Haihe River basin are also discussed. These results allow for the estimation of water resources under forecasted EASM, which will be useful for water resources management in the Haihe River basin.展开更多
基金Project(2006BAC07B03) supported by the National Key Technology R & D Program of ChinaProject(2006G040-A) supported by the Foundation of the Science and Technology Section of Ministry of RailwayProject(2008yb044) supported by the Foundation of Excellent Doctoral Dissertation of Central South University
文摘To protect trains against strong cross-wind along Qinghai-Tibet railway, a strong wind speed monitoring and warning system was developed. And to obtain high-precision wind speed short-term forecasting values for the system to make more accurate scheduling decision, two optimization algorithms were proposed. Using them to make calculative examples for actual wind speed time series from the 18th meteorological station, the results show that: the optimization algorithm based on wavelet analysis method and improved time series analysis method can attain high-precision multi-step forecasting values, the mean relative errors of one-step, three-step, five-step and ten-step forecasting are only 0.30%, 0.75%, 1.15% and 1.65%, respectively. The optimization algorithm based on wavelet analysis method and Kalman time series analysis method can obtain high-precision one-step forecasting values, the mean relative error of one-step forecasting is reduced by 61.67% to 0.115%. The two optimization algorithms both maintain the modeling simple character, and can attain prediction explicit equations after modeling calculation.
基金Sponsored by the National 985 Project Foundation of China
文摘A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of hydraulic flight simulator were decomposed by wavelet muhiresolution to get the information of different frequency bands. The reconstructed input-output data were used to build the model of hydraulic flight simulator with improved particle swarm optimization with mutation (IPSOM) to avoid the premature convergence of traditional optimization techniques effectively. Simulation results show that the proposed method is more precise than traditional system identification methods in operating frequency bands because of the consideration of design index of control system for identification.
基金the National Major Basic Research Program of China(2010CB428404)the“Hundred Talents Program”of Chinese Academy of Sciences(for Dong Chen)Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University(2015490711)
文摘Wavelet analysis and Mann-Kendall tests are employed to evaluate the variation in the East Asian summer monsoon(EASM) and hydrological variables in the Haihe River basin calculated by the Variable Infiltration Capacity model. The relationships between those variables and the EASM are also examined. The results indicate consistent 40 a periodic variation in both the hydrological variables and the EASM. The hydrologic variables show downward trends in the Haihe River basin over the past 60 years, especially in piedmont regions of the Taihang-Yan Mountains. The variables are closely related to the EASM, whose continuous weakening since the 1970 s has resulted in prolonged drought and severe water shortages in the basin. The periodicity of the EASM index was analyzed using continuous wavelet transform methods. We found the most significant periodic signal of the EASM is ~80 years; therefore, the EASM may reinforce and reach a maximum in the 2040 s, resulting in more precipitation and other impacts on basin water resources. Hydrologic variables in the basin in the 2040 s are predicted, and their spatial distributions in the Haihe River basin are also discussed. These results allow for the estimation of water resources under forecasted EASM, which will be useful for water resources management in the Haihe River basin.