期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于小波变换和倒谱分析的腭裂高鼻音等级自动识别 被引量:1
1
作者 赵利博 刘奇 +1 位作者 付方玲 何凌 《计算机科学》 CSCD 北大核心 2018年第4期278-284,共7页
为实现对腭裂高鼻音等级的自动识别,通过对语音信号小波处理和特征提取方法的综合研究,提出基于小波分解系数倒谱特征的腭裂高鼻音等级自动识别算法。目前,研究人员对腭裂语音的研究多基于MFCC、Teager能量、香农能量等特征,识别正确率... 为实现对腭裂高鼻音等级的自动识别,通过对语音信号小波处理和特征提取方法的综合研究,提出基于小波分解系数倒谱特征的腭裂高鼻音等级自动识别算法。目前,研究人员对腭裂语音的研究多基于MFCC、Teager能量、香农能量等特征,识别正确率偏低,且计算量过大。文中对4种等级腭裂高鼻音的1789个元音\a\语音数据提取小波分解系数倒谱特征参数,使用KNN分类器对4种不同等级的高鼻音进行自动识别,将识别结果与MFCC、LPCC、基音周期、共振峰和短时能量共5种经典声学特征的识别结果作比较,同时使用SVM分类器对不同等级的腭裂高鼻音进行自动识别,并与KNN分类器进行对比。实验结果表明,基于小波分解系数倒谱特征的识别结果优于经典声学特征,且KNN分类器的识别结果优于SVM分类器。小波分解系数倒谱特征在KNN中的识别率最高达到91.67%,在SVM中达到87.60%,经典声学特征在KNN分类器中的识别率为21.69%~84.54%,在SVM中的识别率为30.61%~78.24%。 展开更多
关键词 腭裂 高鼻音 分类系统 小波分解系数倒谱
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部