This paper presents an effective method for motion classification using the surface electromyographic (sEMG) signal collected from the forearm. Given the nonlinear and time-varying nature of EMG signal, the wavelet pa...This paper presents an effective method for motion classification using the surface electromyographic (sEMG) signal collected from the forearm. Given the nonlinear and time-varying nature of EMG signal, the wavelet packet transform (WPT) is introduced to extract time-frequency joint information. Then the multi-class classifier based on the least squares support vector machine (LS-SVM) is constructed and verified in the various motion classification tasks. The results of contrastive experiments show that different motions can be identified with high accuracy by the presented method. Furthermore, compared with other classifiers with different features, the performance indicates the potential of the SVM techniques combined with WPT in motion classification.展开更多
In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature...In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.展开更多
基金Supported by the National Basic Research Program("973"Program, No2005CB724303 )
文摘This paper presents an effective method for motion classification using the surface electromyographic (sEMG) signal collected from the forearm. Given the nonlinear and time-varying nature of EMG signal, the wavelet packet transform (WPT) is introduced to extract time-frequency joint information. Then the multi-class classifier based on the least squares support vector machine (LS-SVM) is constructed and verified in the various motion classification tasks. The results of contrastive experiments show that different motions can be identified with high accuracy by the presented method. Furthermore, compared with other classifiers with different features, the performance indicates the potential of the SVM techniques combined with WPT in motion classification.
基金The Natural Science Foundation of Heilongjiang Province ( No. F201018)the National Natural Science Foundation of China( No. 60901042)
文摘In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.