期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
应对风速不确定性的聚类预测方法
1
作者 王勇超 尹维波 《电力系统装备》 2017年第10期131-132,共2页
为提高风速预测精度,提出了一种基于风速相似日聚类的小波包-神经网络风速预测方法.通过进行风速相似日聚类,把全年分为风速规律性更强的若干类时间段,然后对同类时间段内的风电数据进行小波包分解,得到频率不同、但规律性更强的风速子... 为提高风速预测精度,提出了一种基于风速相似日聚类的小波包-神经网络风速预测方法.通过进行风速相似日聚类,把全年分为风速规律性更强的若干类时间段,然后对同类时间段内的风电数据进行小波包分解,得到频率不同、但规律性更强的风速子序列,最后基于径向基神经网络对各子序列建模并预测,通过叠加得到预测风速.基于风速相似日聚类和小波包分解均增强了风速子序列的规律性,从而提高风速预测的精度,算例仿真结果证明了所提方法的有效性. 展开更多
关键词 风速预测 小波包-神经网络 风速相似日聚类
下载PDF
A novel internet traffic identification approach using wavelet packet decomposition and neural network 被引量:6
2
作者 谭骏 陈兴蜀 +1 位作者 杜敏 朱锴 《Journal of Central South University》 SCIE EI CAS 2012年第8期2218-2230,共13页
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network... Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network. 展开更多
关键词 neural network particle swarm optimization statistical characteristic traffic identification wavelet packet decomposition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部