A key aspect in extracting quantitative information from FMI logs is to segment the FMI image to get images of pores, vugs and fractures. A segmentation method based on the dyadic wavelet transform in 2-D is introduce...A key aspect in extracting quantitative information from FMI logs is to segment the FMI image to get images of pores, vugs and fractures. A segmentation method based on the dyadic wavelet transform in 2-D is introduced in this paper. The first step is to find all the edge pixels of the FMI image using the 2-D wavelet transform. The second step is to calculate a segmentation threshold based on the average value of the edge pixels. Field data processing examples show that sub-images of vugs and fractures can be correctly separated from original FMI data continuously and automatically along the depth axis. The image segmentation lays the foundation for in-situ parameter calculation.展开更多
This paper presents an efficient quadtree based fractal image coding scheme in wavelet transform domain based on the wavelet based theory of fractal image compression introduced by Davis. In the scheme, zerotrees of...This paper presents an efficient quadtree based fractal image coding scheme in wavelet transform domain based on the wavelet based theory of fractal image compression introduced by Davis. In the scheme, zerotrees of wavelet coefficients are used to reduce the number of domain blocks, which leads to lower bit cost required to represent the location information of fractal coding, and overall entropy constrained optimization is performed for the decision trees as well as for the sets of scalar quantizers and self quantizers of wavelet subtrees. Experiment results show that at the low bit rates, the proposed scheme gives about 1 dB improvement in PSNR over the reported results.展开更多
In this paper, we propose a sparse overcomplete image approximation method based on the ideas of overcomplete log-Gabor wavelet, mean shift and energy concentration. The proposed approximation method selects the neces...In this paper, we propose a sparse overcomplete image approximation method based on the ideas of overcomplete log-Gabor wavelet, mean shift and energy concentration. The proposed approximation method selects the necessary wavelet coefficients with a mean shift based algorithm, and concentrates energy on the selected coefficients. It can sparsely approximate the original image, and converges faster than the existing local competition based method. Then, we propose a new compression scheme based on the above approximation method. The scheme has compression performance similar to JPEG 2000. The images decoded with the proposed compression scheme appear more pleasant to the human eyes than those with JPEG 2000.展开更多
In order to enhance the image information from multi-sensor and to improve the abilities of the information analysis and the feature extraction, this letter proposed a new fusion approach in pixel level by means of th...In order to enhance the image information from multi-sensor and to improve the abilities of the information analysis and the feature extraction, this letter proposed a new fusion approach in pixel level by means of the Wavelet Packet Transform (WPT). The WPT is able to decompose an image into low frequency band and high frequency band in higher scale. It offers a more precise method for image analysis than Wavelet Transform (WT). Firstly, the proposed approach employs HIS (Hue, Intensity, Saturation) transform to obtain the intensity component of CBERS (China-Brazil Earth Resource Satellite) multi-spectral image. Then WPT transform is employed to decompose the intensity component and SPOT (Systeme Pour I'Observation de la Therre ) image into low frequency band and high frequency band in three levels. Next, two high frequency coefficients and low frequency coefficients of the images are combined by linear weighting strategies. Finally, the fused image is obtained with inverse WPT and inverse HIS. The results show the new approach can fuse details of input image successfully, and thereby can obtain a more satisfactory result than that of HM (Histogram Matched)-based fusion algorithm and WT-based fusion approach.展开更多
Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral reso...Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral resolution as source hyperspeetral image. According to the characteristics and 3-Dimensional (3-D) feature analysis of multi-spectral and hyperspectral image data volume, the new fusion approach using 3-D wavelet based method is proposed. This approach is composed of four major procedures: Spatial and spectral resampling, 3-D wavelet transform, wavelet coefficient integration and 3-D inverse wavelet transform. Especially, a novel method, Ratio Image Based Spectral Resampling (RIBSR)method, is proposed to accomplish data resampling in spectral domain by utilizing the property of ratio image. And a new fusion rule, Average and Substitution (A&S) rule, is employed as the fusion rule to accomplish wavelet coefficient integration. Experimental results illustrate that the fusion approach using 3-D wavelet transform can utilize both spatial and spectral characteristics of source images more adequately and produce fused image with higher quality and fewer artifacts than fusion approach using 2-D wavelet transform. It is also revealed that RIBSR method is capable of interpolating the missing data more effectively and correctly, and A&S rule can integrate coefficients of source images in 3-D wavelet domain to preserve both spatial and spectral features of source images more properly.展开更多
Mean shift is a widely used clustering algorithm in image segmentation. However, the segmenting results are not so good as expected when dealing with the texture surface due to the influence of the textures. Therefore...Mean shift is a widely used clustering algorithm in image segmentation. However, the segmenting results are not so good as expected when dealing with the texture surface due to the influence of the textures. Therefore, an approach based on wavelet transform (WT), co-occurrence matrix (COM) and mean shift is proposed in this paper. First, WT and COM are employed to extract the optimal resolution approximation of the original image as feature image. Then, mean shift is successfully used to obtain better detection results. Finally, experiments are done to show this approach is effective.展开更多
In this paper, more efficient, low-complexity and reliable region of interest (ROI) image codec for compressing smooth low texture remote sensing images is proposed. We explore the efficiency of the modified RO! cod...In this paper, more efficient, low-complexity and reliable region of interest (ROI) image codec for compressing smooth low texture remote sensing images is proposed. We explore the efficiency of the modified RO! codec with respect to the selected set of convenient wavelet filters, which is a novel method. Such ROI coding experiment analysis representing low bit rate lossy to high quality lossless reconstruction with timing analysis is useful for improving remote sensing ground truth surveillance efficiency in terms of time and quality. The subjective [i.e. fair, five observer (HVS) evaluations using enhanced 3D picture view Hyper memory display technology] and the objective results revealed that for faster ground truth ROI coding applications, the Symlet-4 adaptation performs better than Biorthogonal 4.4 and Biorthogonal 6.8. However, the discrete Meyer wavelet adaptation is the best solution for delayed ROI image reconstructions.展开更多
In this paper,an improved zerotree structure and a new coding procedure are adopted,which improve the reconstructed image qualities. Moreover, the lists in SPIHT are replaced by flag maps, and lifting scheme is adopte...In this paper,an improved zerotree structure and a new coding procedure are adopted,which improve the reconstructed image qualities. Moreover, the lists in SPIHT are replaced by flag maps, and lifting scheme is adopted to realize wavelet transform, which lowers the memory requirements and speeds up the ceding process. Experimental results show that the algorithm is more effective and efficient compared with SPIHT.展开更多
A selective subband enhancement method based on biorthogonal wavelet base is proposed. This novel image enhancement method is just for those images in which the energy of target information area is relatively lower. I...A selective subband enhancement method based on biorthogonal wavelet base is proposed. This novel image enhancement method is just for those images in which the energy of target information area is relatively lower. It includes two parts: one is enhancing the low frequency subband by wavelet decomposition and the other is building a new criterion based on entropy window to image evaluation. Experimental results show that this new scheme may result in a perfect image processing.展开更多
A new approach for designing the Biorthogonal Wavelet Filter Bank (BWFB) for the purpose of image compression is presented in this letter. The approach is decomposed into two steps. First, an optimal filter bank is de...A new approach for designing the Biorthogonal Wavelet Filter Bank (BWFB) for the purpose of image compression is presented in this letter. The approach is decomposed into two steps. First, an optimal filter bank is designed in theoretical sense based on Vaidyanathan’s coding gain criterion in SubBand Coding (SBC) system. Then the above filter bank is optimized based on the criterion of Peak Signal-to-Noise Ratio (PSNR) in JPEG2000 image compression system, resulting in a BWFB in practical application sense. With the approach, a series of BWFB for a specific class of applications related to image compression, such as remote sensing images, can be fast designed. Here, new 5/3 BWFB and 9/7 BWFB are presented based on the above approach for the remote sensing image compression applications. Experiments show that the two filter banks are equally performed with respect to CDF 9/7 and LT 5/3 filter in JPEG2000 standard; at the same time, the coefficients and the lifting parameters of the lifting scheme are all rational, which bring the computational advantage, and the ease for VLSI implementation.展开更多
基金The research was supported by the FifteenthNational Scientific and Technological Project (2001-BA605A-03-02)
文摘A key aspect in extracting quantitative information from FMI logs is to segment the FMI image to get images of pores, vugs and fractures. A segmentation method based on the dyadic wavelet transform in 2-D is introduced in this paper. The first step is to find all the edge pixels of the FMI image using the 2-D wavelet transform. The second step is to calculate a segmentation threshold based on the average value of the edge pixels. Field data processing examples show that sub-images of vugs and fractures can be correctly separated from original FMI data continuously and automatically along the depth axis. The image segmentation lays the foundation for in-situ parameter calculation.
文摘This paper presents an efficient quadtree based fractal image coding scheme in wavelet transform domain based on the wavelet based theory of fractal image compression introduced by Davis. In the scheme, zerotrees of wavelet coefficients are used to reduce the number of domain blocks, which leads to lower bit cost required to represent the location information of fractal coding, and overall entropy constrained optimization is performed for the decision trees as well as for the sets of scalar quantizers and self quantizers of wavelet subtrees. Experiment results show that at the low bit rates, the proposed scheme gives about 1 dB improvement in PSNR over the reported results.
文摘In this paper, we propose a sparse overcomplete image approximation method based on the ideas of overcomplete log-Gabor wavelet, mean shift and energy concentration. The proposed approximation method selects the necessary wavelet coefficients with a mean shift based algorithm, and concentrates energy on the selected coefficients. It can sparsely approximate the original image, and converges faster than the existing local competition based method. Then, we propose a new compression scheme based on the above approximation method. The scheme has compression performance similar to JPEG 2000. The images decoded with the proposed compression scheme appear more pleasant to the human eyes than those with JPEG 2000.
文摘In order to enhance the image information from multi-sensor and to improve the abilities of the information analysis and the feature extraction, this letter proposed a new fusion approach in pixel level by means of the Wavelet Packet Transform (WPT). The WPT is able to decompose an image into low frequency band and high frequency band in higher scale. It offers a more precise method for image analysis than Wavelet Transform (WT). Firstly, the proposed approach employs HIS (Hue, Intensity, Saturation) transform to obtain the intensity component of CBERS (China-Brazil Earth Resource Satellite) multi-spectral image. Then WPT transform is employed to decompose the intensity component and SPOT (Systeme Pour I'Observation de la Therre ) image into low frequency band and high frequency band in three levels. Next, two high frequency coefficients and low frequency coefficients of the images are combined by linear weighting strategies. Finally, the fused image is obtained with inverse WPT and inverse HIS. The results show the new approach can fuse details of input image successfully, and thereby can obtain a more satisfactory result than that of HM (Histogram Matched)-based fusion algorithm and WT-based fusion approach.
文摘Image fusion is performed between one band of multi-spectral image and two bands of hyperspectral image to produce fused image with the same spatial resolution as source multi-spectral image and the same spectral resolution as source hyperspeetral image. According to the characteristics and 3-Dimensional (3-D) feature analysis of multi-spectral and hyperspectral image data volume, the new fusion approach using 3-D wavelet based method is proposed. This approach is composed of four major procedures: Spatial and spectral resampling, 3-D wavelet transform, wavelet coefficient integration and 3-D inverse wavelet transform. Especially, a novel method, Ratio Image Based Spectral Resampling (RIBSR)method, is proposed to accomplish data resampling in spectral domain by utilizing the property of ratio image. And a new fusion rule, Average and Substitution (A&S) rule, is employed as the fusion rule to accomplish wavelet coefficient integration. Experimental results illustrate that the fusion approach using 3-D wavelet transform can utilize both spatial and spectral characteristics of source images more adequately and produce fused image with higher quality and fewer artifacts than fusion approach using 2-D wavelet transform. It is also revealed that RIBSR method is capable of interpolating the missing data more effectively and correctly, and A&S rule can integrate coefficients of source images in 3-D wavelet domain to preserve both spatial and spectral features of source images more properly.
基金Project (No. 035115039) supported by the Scientific Committee of Shanghai, China
文摘Mean shift is a widely used clustering algorithm in image segmentation. However, the segmenting results are not so good as expected when dealing with the texture surface due to the influence of the textures. Therefore, an approach based on wavelet transform (WT), co-occurrence matrix (COM) and mean shift is proposed in this paper. First, WT and COM are employed to extract the optimal resolution approximation of the original image as feature image. Then, mean shift is successfully used to obtain better detection results. Finally, experiments are done to show this approach is effective.
基金Project (No. 2004144013) supported by the Chinese Government Scholarship Council, China
文摘In this paper, more efficient, low-complexity and reliable region of interest (ROI) image codec for compressing smooth low texture remote sensing images is proposed. We explore the efficiency of the modified RO! codec with respect to the selected set of convenient wavelet filters, which is a novel method. Such ROI coding experiment analysis representing low bit rate lossy to high quality lossless reconstruction with timing analysis is useful for improving remote sensing ground truth surveillance efficiency in terms of time and quality. The subjective [i.e. fair, five observer (HVS) evaluations using enhanced 3D picture view Hyper memory display technology] and the objective results revealed that for faster ground truth ROI coding applications, the Symlet-4 adaptation performs better than Biorthogonal 4.4 and Biorthogonal 6.8. However, the discrete Meyer wavelet adaptation is the best solution for delayed ROI image reconstructions.
基金Supported by Korea ETRI cooperationfoundation(12003121192202) .
文摘In this paper,an improved zerotree structure and a new coding procedure are adopted,which improve the reconstructed image qualities. Moreover, the lists in SPIHT are replaced by flag maps, and lifting scheme is adopted to realize wavelet transform, which lowers the memory requirements and speeds up the ceding process. Experimental results show that the algorithm is more effective and efficient compared with SPIHT.
基金Project (2003AA1Z2610) supported by National High Technology Research and Development Programof China
文摘A selective subband enhancement method based on biorthogonal wavelet base is proposed. This novel image enhancement method is just for those images in which the energy of target information area is relatively lower. It includes two parts: one is enhancing the low frequency subband by wavelet decomposition and the other is building a new criterion based on entropy window to image evaluation. Experimental results show that this new scheme may result in a perfect image processing.
基金Supported by the National Natural Science Foundation of China (No.60021302, No.60635050 and No.60405004).
文摘A new approach for designing the Biorthogonal Wavelet Filter Bank (BWFB) for the purpose of image compression is presented in this letter. The approach is decomposed into two steps. First, an optimal filter bank is designed in theoretical sense based on Vaidyanathan’s coding gain criterion in SubBand Coding (SBC) system. Then the above filter bank is optimized based on the criterion of Peak Signal-to-Noise Ratio (PSNR) in JPEG2000 image compression system, resulting in a BWFB in practical application sense. With the approach, a series of BWFB for a specific class of applications related to image compression, such as remote sensing images, can be fast designed. Here, new 5/3 BWFB and 9/7 BWFB are presented based on the above approach for the remote sensing image compression applications. Experiments show that the two filter banks are equally performed with respect to CDF 9/7 and LT 5/3 filter in JPEG2000 standard; at the same time, the coefficients and the lifting parameters of the lifting scheme are all rational, which bring the computational advantage, and the ease for VLSI implementation.