该文针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像含有大量的乘性斑点噪声的特点,提出了一种小波域隐类属的马尔可夫随机场(Markov Random Field,MRF)图像分割算法来抑制噪声的影响。考虑到小波的聚集性和持续性,该算法重新构...该文针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像含有大量的乘性斑点噪声的特点,提出了一种小波域隐类属的马尔可夫随机场(Markov Random Field,MRF)图像分割算法来抑制噪声的影响。考虑到小波的聚集性和持续性,该算法重新构造了待分图像小波域模型——以类属为隐状态的混合长拖尾模型,将隐类属的马尔可夫随机场推广到小波域上,并用改进的上下文模型估计尺度间转移概率,最后推导出了新的最大后验(Maximum A Posteriori,MAP)分割公式。仿真结果证明,该算法具有鲁棒性能够有效地抑制噪声对图像的影响,得到准确的分割结果。展开更多
针对医学图像分割中器官组织结构复杂重叠,且伴有噪声、局部容积效应、及伪影的问题,提出了小波域树结构MRF(wavelet tree-structured Markov random field,WTS-MRF)的医学图像分割算法。通过小波多分辨率分析描述医学图像的特征信息;...针对医学图像分割中器官组织结构复杂重叠,且伴有噪声、局部容积效应、及伪影的问题,提出了小波域树结构MRF(wavelet tree-structured Markov random field,WTS-MRF)的医学图像分割算法。通过小波多分辨率分析描述医学图像的特征信息;在小波分解的每一尺度上定义相同的树结构MRF来表征医学图像特征信息间的联系。小波域树结构MRF模型包括层间小波系数四叉树结构和层内TS-MRF结构,层间小波系数结构具有一阶Markov性;层内TS-MRF模型,采用Potts模型对节点标号势函数建模,同标号的观测特征用高斯模型建模;最后,通过从低分辨率尺度到高分辨率尺度的递归运算、以及每一分辨率中从分类层次树的顶层向底层的递归来求解最大后验概率,实现医学图像分割。实验结果从视觉效果和定量分析两方面验证表明,文中算法能有效地提取图像的细节信息,比较完整地分割医学图像的目标区域,具有较高的分割精度和鲁棒性。展开更多
定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的...定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的结构形式,该模型将一系列的MRF嵌套定义在多分辨率的小波域中:每一个树节点对应于定义在不同分辨率上的一个MRF集合,并通过条件概率的形式将相邻分辨率上的MRF间的作用关系考虑进来;同时相同分辨率的父子节点对应的MRF通过区域约束嵌套定义.基于WTS-MRF模型,给出了一个监督图像分割的递归算法,通过给定的分类层次树表示先验信息,并通过训练数据给出叶子节点在各分辨率上的统计参数.它在尺度内和尺度间两个层次上进行递归:首先,在最低分辨率上执行尺度内递归,即采用ICM算法从树的根节点到叶子节点依次对MRF进行递归估计;然后执行尺度间递归,即在相邻的更高分辨率尺度上,通过直接投影的方式依次获取每一MRF的初始估计,并采用ICM算法递归优化;最后,原始分辨率的MRF估计完成,获取最终分割结果.两组实验从视觉效果和定量指标(整体分类正确率和Kappa系数)两个方面验证了算法的有效性.展开更多
文摘该文针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像含有大量的乘性斑点噪声的特点,提出了一种小波域隐类属的马尔可夫随机场(Markov Random Field,MRF)图像分割算法来抑制噪声的影响。考虑到小波的聚集性和持续性,该算法重新构造了待分图像小波域模型——以类属为隐状态的混合长拖尾模型,将隐类属的马尔可夫随机场推广到小波域上,并用改进的上下文模型估计尺度间转移概率,最后推导出了新的最大后验(Maximum A Posteriori,MAP)分割公式。仿真结果证明,该算法具有鲁棒性能够有效地抑制噪声对图像的影响,得到准确的分割结果。
文摘针对医学图像分割中器官组织结构复杂重叠,且伴有噪声、局部容积效应、及伪影的问题,提出了小波域树结构MRF(wavelet tree-structured Markov random field,WTS-MRF)的医学图像分割算法。通过小波多分辨率分析描述医学图像的特征信息;在小波分解的每一尺度上定义相同的树结构MRF来表征医学图像特征信息间的联系。小波域树结构MRF模型包括层间小波系数四叉树结构和层内TS-MRF结构,层间小波系数结构具有一阶Markov性;层内TS-MRF模型,采用Potts模型对节点标号势函数建模,同标号的观测特征用高斯模型建模;最后,通过从低分辨率尺度到高分辨率尺度的递归运算、以及每一分辨率中从分类层次树的顶层向底层的递归来求解最大后验概率,实现医学图像分割。实验结果从视觉效果和定量分析两方面验证表明,文中算法能有效地提取图像的细节信息,比较完整地分割医学图像的目标区域,具有较高的分割精度和鲁棒性。
文摘定义在单一空间分辨率上的树结构马尔可夫场(Tree-Structured Markov Random Field,TS-MRF)模型能够表达图像的分层结构信息,但难以描述图像的非平稳性.针对该问题,提出小波域的TS-MRF图像建模方法—WTS-MRF模型.按照图像分类层次树的结构形式,该模型将一系列的MRF嵌套定义在多分辨率的小波域中:每一个树节点对应于定义在不同分辨率上的一个MRF集合,并通过条件概率的形式将相邻分辨率上的MRF间的作用关系考虑进来;同时相同分辨率的父子节点对应的MRF通过区域约束嵌套定义.基于WTS-MRF模型,给出了一个监督图像分割的递归算法,通过给定的分类层次树表示先验信息,并通过训练数据给出叶子节点在各分辨率上的统计参数.它在尺度内和尺度间两个层次上进行递归:首先,在最低分辨率上执行尺度内递归,即采用ICM算法从树的根节点到叶子节点依次对MRF进行递归估计;然后执行尺度间递归,即在相邻的更高分辨率尺度上,通过直接投影的方式依次获取每一MRF的初始估计,并采用ICM算法递归优化;最后,原始分辨率的MRF估计完成,获取最终分割结果.两组实验从视觉效果和定量指标(整体分类正确率和Kappa系数)两个方面验证了算法的有效性.