期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于小波特征尺度熵-隐半马尔可夫模型的设备退化状态识别方法及应用 被引量:7
1
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《兵工学报》 EI CAS CSCD 北大核心 2008年第2期198-203,共6页
机械设备从正常到故障往往经历一系列退化状态,正确识别设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。提出了一种基于小波特征尺度熵-隐半马尔可夫模型(HSMM)的设备退化状态识别新方法。通过小波变换提取小... 机械设备从正常到故障往往经历一系列退化状态,正确识别设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。提出了一种基于小波特征尺度熵-隐半马尔可夫模型(HSMM)的设备退化状态识别新方法。通过小波变换提取小波特征尺度熵,然后构造信号的小波特征尺度熵向量,并以此作为HSMM的输入进行训练,建立基于HSMM的机械设备运行状态分类器,从而实现设备退化状态的识别。并且以滚动轴承为例,对正常和几种故障程度不同的滚动体运行状态进行了识别,实验结果表明该方法能有效的识别设备的退化状态。 展开更多
关键词 信息处理技术 小波特征尺度熵 隐半马尔可夫模型(HSMM) 状态识别 退化状态
下载PDF
基于非广延小波特征尺度熵和支持向量机的轴承状态识别 被引量:10
2
作者 董绍江 汤宝平 张焱 《振动与冲击》 EI CSCD 北大核心 2012年第15期50-54,共5页
为了对轴承的运行状态进行有效的识别,以便进一步评估和预测轴承的寿命,提出了基于非广延小波特征尺度熵和Morlet小波核支持向量机(Morlet Wavelet Kernel Support Vector Machine,MWSVM)的轴承运行状态识别的新方法。对采集到的轴承振... 为了对轴承的运行状态进行有效的识别,以便进一步评估和预测轴承的寿命,提出了基于非广延小波特征尺度熵和Morlet小波核支持向量机(Morlet Wavelet Kernel Support Vector Machine,MWSVM)的轴承运行状态识别的新方法。对采集到的轴承振动信号进行小波分解,得到相应的小波分解系数,在此基础上结合非广延熵理论提出了沿尺度分布的非广延小波尺度熵特征提取方法。但是通过小波特征尺度熵分析后获得的特征信息存在维数较高,特征信息间冗余严重的问题,因此,引入了流形学维数约简算法(Locality Preserving Projection,LPP)进行敏感特征信息的提取,减少在特征信息提取过程中人为因素的干扰。以约简后的特征信息作为MWSVM的输入进行训练,建立轴承的状态识别模型,从而实现轴承状态的识别。通过对某轴承内圈正常状态和几种故障程度不同的状态进行识别,试验结果表明了方法的有效性。 展开更多
关键词 非广延小波特征尺度熵 流形学算法 Morlet小波核支持向量机 状态识别
下载PDF
小波相关特征尺度熵在滚动轴承故障诊断中的应用 被引量:15
3
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《国防科技大学学报》 EI CAS CSCD 北大核心 2007年第6期102-105,111,共5页
将小波相关滤波方法与Shannon信息熵相结合,提出了一种故障检测与诊断的方法——小波相关特征尺度熵故障法。首先利用小波相关滤波方法提取滚动轴承故障振动信号的微弱故障信息特征,以求得信噪比较高的尺度域小波系数;然后结合Shannon... 将小波相关滤波方法与Shannon信息熵相结合,提出了一种故障检测与诊断的方法——小波相关特征尺度熵故障法。首先利用小波相关滤波方法提取滚动轴承故障振动信号的微弱故障信息特征,以求得信噪比较高的尺度域小波系数;然后结合Shannon信息熵理论给出了沿尺度分布的小波相关特征尺度熵定义及其计算方法。小波相关特征尺度熵能够定量表征不同尺度的能量分布,各尺度能量分布的均匀性可以反映滚动轴承的运行状态的差别,选取最能反映故障特征的小波相关特征尺度熵作为特征参数,通过所选取的小波相关特征尺度熵大小判断滚动轴承的工作状态和故障类型。实验证明该方法能有效地判断滚动轴承故障特征,为滚动轴承故障诊断提供了新的思路。 展开更多
关键词 小波相关滤 小波相关特征尺度 滚动轴承 Shannon
下载PDF
基于小波相关特征尺度熵的预测特征信息提取方法研究 被引量:15
4
作者 曾庆虎 刘冠军 邱静 《中国机械工程》 EI CAS CSCD 北大核心 2008年第10期1193-1196,共4页
提出一种小波相关特征尺度熵WCFSE的预测特征信息提取方法。将小波相关滤波法与Shannon信息熵理论相结合,给出了沿尺度分布的WCFSE的定义及其计算方法。WCFSE定量表征不同尺度的能量分布,各尺度能量分布的均匀性反映设备运行状态的差别... 提出一种小波相关特征尺度熵WCFSE的预测特征信息提取方法。将小波相关滤波法与Shannon信息熵理论相结合,给出了沿尺度分布的WCFSE的定义及其计算方法。WCFSE定量表征不同尺度的能量分布,各尺度能量分布的均匀性反映设备运行状态的差别,选取最能反映故障特征的WCFSE作为特征参数来判断设备运行状态。正常和几种故障程度不同的滚动体运行状态的识别结果验证了该方法的有效性和实用性。 展开更多
关键词 小波相关特征尺度 小波相关滤 特征提取 Shannon 预测特征信息
下载PDF
基于小波相关特征尺度熵的HSMM设备退化状态识别与故障预测方法 被引量:16
5
作者 曾庆虎 邱静 刘冠军 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第12期2559-2564,共6页
隐半马尔可夫模型(HSMM)是隐马尔可夫模型(HMM)的一种扩展模型,是在已定义的HMM结构上加入了时间组成部分,克服了因马尔可夫链的假设造成HMM建模所具有的局限性,与HMM相比具有更好的建模能力和分析能力,而且可以直接用于预测。基于振动... 隐半马尔可夫模型(HSMM)是隐马尔可夫模型(HMM)的一种扩展模型,是在已定义的HMM结构上加入了时间组成部分,克服了因马尔可夫链的假设造成HMM建模所具有的局限性,与HMM相比具有更好的建模能力和分析能力,而且可以直接用于预测。基于振动信号与语音信号的相似性,将HSMM引入机械设备退化状态识别与故障预测中,提出基于小波相关特征尺度熵(WCFSE)的HSMM设备退化状态识别与故障预测方法。首先将小波相关滤波法与信息熵理论相结合得到能敏感表征故障严重程度的WCFSE向量,并以此向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器与故障预测模型,从而实现设备退化状态识别与故障预测。将其应用到滚动轴承的退化状态识别与故障预测中,验证了该方法的有效性。 展开更多
关键词 故障预测 状态识别 小波相关特征尺度 隐半马尔可夫模型(HSMM) 退化状态
下载PDF
小波相关特征尺度熵和隐半马尔可夫模型在设备退化状态识别中的应用 被引量:12
6
作者 曾庆虎 邱静 刘冠军 《机械工程学报》 EI CAS CSCD 北大核心 2008年第11期236-241,247,共7页
为正确识别机械设备当前所处的退化状态,预防设备进一步退化和故障的发生,提出一种基于小波相关特征尺度熵和隐半马尔可夫模型(Hidden semi-Markov models,HSMM)的设备退化状态识别新方法。对采集到的设备振动信号进行小波相关滤波处理... 为正确识别机械设备当前所处的退化状态,预防设备进一步退化和故障的发生,提出一种基于小波相关特征尺度熵和隐半马尔可夫模型(Hidden semi-Markov models,HSMM)的设备退化状态识别新方法。对采集到的设备振动信号进行小波相关滤波处理,得到信噪比较高的尺度域小波系数,在此基础上结合信息熵理论提出了沿尺度分布的小波相关特征尺度熵概念。构造信号的小波相关特征尺度熵/矢量,并以此矢量作为HSMM的输入进行训练,建立基于HSMM的机械设备运行状态分类器,从而实现设备退化状态的识别。以滚动轴承为例,对正常和几种故障程度不同的滚动体运行状态进行了识别,同时还与基于小波相关特征尺度熵-HMM的状态识别法进行了比较,试验结果表明该方法能有效识别设备的退化状态。 展开更多
关键词 小波相关特征尺度 隐半马尔可夫模型(HSMM) 状态识别 退化状态
下载PDF
基于KPCA-HSMM设备退化状态识别与故障预测方法研究 被引量:28
7
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第7期1341-1346,共6页
为消除多通道观测信息冗余,压缩高维故障特征,提出基于KPCA多通道特征信息融合的HSMM设备退化状态识别与故障预测新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量,然后,利用KPCA... 为消除多通道观测信息冗余,压缩高维故障特征,提出基于KPCA多通道特征信息融合的HSMM设备退化状态识别与故障预测新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量,然后,利用KPCA方法对多通道的小波相关特征尺度熵向量进行冗余消除和特征融合,得到多通道的融合小波相关特征尺度熵向量,并以此向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器与故障预测模型,从而实现设备退化状态识别与故障预测。将其应用到滚动轴承的退化状态识别与故障预测中,验证了该方法的有效性。 展开更多
关键词 故障预测 状态识别 小波相关特征尺度 信息融合 KPCA 隐半马尔可夫模型(HSMM)
下载PDF
基于KPCA-HSMM设备退化状态识别方法的研究 被引量:5
8
作者 曾庆虎 邱静 +1 位作者 刘冠军 苗强 《兵工学报》 EI CAS CSCD 北大核心 2009年第6期740-745,共6页
为消除多通道观测信息冗余,压缩高维故障特征,提出了基于核主元分析(KPCA)多通道特征信息融合的隐半马尔可夫模型(HSMM)设备退化状态识别的新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征... 为消除多通道观测信息冗余,压缩高维故障特征,提出了基于核主元分析(KPCA)多通道特征信息融合的隐半马尔可夫模型(HSMM)设备退化状态识别的新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量;然后,利用KPCA方法对多通道的小波相关特征尺度熵向量进行冗余消除和特征融合,得到多通道的融合小波相关特征尺度熵向量;并以此融合特征向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器,从而实现设备退化状态的识别。实验结果表明,该方法能有效的识别设备的退化状态,从而为多通道特征信息融合设备退化状态识别开辟新的途径。 展开更多
关键词 信息处理技术 信息融合 核主元分析 小波相关特征尺度 隐半马尔可夫模型 状态识别 退化状态
下载PDF
基于WCFSE-FSVM的转子振动故障诊断方法 被引量:4
9
作者 费成巍 白广忱 《推进技术》 EI CAS CSCD 北大核心 2013年第9期1266-1271,共6页
为了提高含有噪声和野值的转子振动故障样本诊断精度,提出了基于WCFSE-FSVM的故障诊断方法。充分融合小波相关特征尺度熵(WCFSE)特征提取方法和FSVM故障诊断方法的优点,建立WCFSE-FSVM故障诊断模型。基于转子实验台模拟4种典型故障,获... 为了提高含有噪声和野值的转子振动故障样本诊断精度,提出了基于WCFSE-FSVM的故障诊断方法。充分融合小波相关特征尺度熵(WCFSE)特征提取方法和FSVM故障诊断方法的优点,建立WCFSE-FSVM故障诊断模型。基于转子实验台模拟4种典型故障,获得原始故障数据;并利用WCFSE方法提取这些故障数据的WCFSE值,选取故障信号高频段中的尺度1和尺度2上的小波相关特征尺度熵W1和W2构造出振动信号的故障向量作为故障样本,建立FSVM诊断模型。实例分析显示:WCFSE-FSVM方法的转子故障诊断精度最高,即故障类别诊断精度为94.49%,故障严重程度的诊断精度为95.58%,二者都优于其它故障诊断方法。验证了WCFSEFSVM方法的可行性和有效性。 展开更多
关键词 小波相关特征尺度 模糊支持向量机 转子振动 故障诊断
下载PDF
Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting 被引量:16
10
作者 李一兵 葛娟 +1 位作者 林云 叶方 《Journal of Central South University》 SCIE EI CAS 2014年第11期4254-4260,共7页
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m... In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value. 展开更多
关键词 emitter recognition multi-scale wavelet entropy feature weighting uneven weight factor stability weight factor
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部