Color histogram is now widely used in image retrieval. Color histogram-based image retrieval methods are simple and efficient but without considering the spatial distribution information of the color. To overcome the ...Color histogram is now widely used in image retrieval. Color histogram-based image retrieval methods are simple and efficient but without considering the spatial distribution information of the color. To overcome the shortcoming of conventional color histogram-based image retrieval methods, an image retrieval method based on Radon Transform (RT) is proposed. In order to reduce the computational complexity, wavelet decomposition is used to compress image data. Firstly, images are decomposed by Mallat algorithm. The low-frequency components are then projected by RT to generate the spatial color feature. Finally the moment feature matrices which are saved along with original images are obtained. Experimental results show that the RT based retrieval is more accurate and efficient than traditional color histogram-based method in case that there are obvious objects in images. Further more, RT based retrieval runs significantly faster than the traditional color histogram methods.展开更多
An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This proposed method employs wavelet transform and guided filter instead of the soft matting procedure to estimat...An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This proposed method employs wavelet transform and guided filter instead of the soft matting procedure to estimate and refine the depth map of haze images. Moreover, a contrast enhancement method based on just noticeable difference(JND) and quadratic function is adopted to enhance the contrast for the dehazed image, since the scene radiance is usually not as bright as the atmospheric light,and the dehazed image looks dim. The experimental results show that the proposed approach can effectively enhance the haze image and is well suitable for implementing on the surveillance and obstacle detection systems.展开更多
基金Supported by the National Natural Science Foundation of China (No.60372059) Natural Foundation of Anhui Province (No.03042206).
文摘Color histogram is now widely used in image retrieval. Color histogram-based image retrieval methods are simple and efficient but without considering the spatial distribution information of the color. To overcome the shortcoming of conventional color histogram-based image retrieval methods, an image retrieval method based on Radon Transform (RT) is proposed. In order to reduce the computational complexity, wavelet decomposition is used to compress image data. Firstly, images are decomposed by Mallat algorithm. The low-frequency components are then projected by RT to generate the spatial color feature. Finally the moment feature matrices which are saved along with original images are obtained. Experimental results show that the RT based retrieval is more accurate and efficient than traditional color histogram-based method in case that there are obvious objects in images. Further more, RT based retrieval runs significantly faster than the traditional color histogram methods.
基金supported by the National Natural Science Foundation of China(61075013)the Joint Funds of the Civil Aviation(61139003)
文摘An improved single image dehazing method based on dark channel prior and wavelet transform is proposed. This proposed method employs wavelet transform and guided filter instead of the soft matting procedure to estimate and refine the depth map of haze images. Moreover, a contrast enhancement method based on just noticeable difference(JND) and quadratic function is adopted to enhance the contrast for the dehazed image, since the scene radiance is usually not as bright as the atmospheric light,and the dehazed image looks dim. The experimental results show that the proposed approach can effectively enhance the haze image and is well suitable for implementing on the surveillance and obstacle detection systems.