为了利用因子排序组合的信息并保证组合权重具有一定的稀疏性,基于Sparse Group Lasso (SGLasso)和经典的均值-方差(mean-variance,MV)投资组合策略,构建了能够对高维资产数据集进行投资的SGLasso-MV策略.与Lasso和GLasso相比,SGLasso...为了利用因子排序组合的信息并保证组合权重具有一定的稀疏性,基于Sparse Group Lasso (SGLasso)和经典的均值-方差(mean-variance,MV)投资组合策略,构建了能够对高维资产数据集进行投资的SGLasso-MV策略.与Lasso和GLasso相比,SGLasso能够同时实现组内和组间的稀疏性,并利用了特征分组信息,因此适用于改进MV策略输出权重的不稳定性和高误差性问题.在实证数据方面,利用A股1997年至2019年所有可用A股股票的日际实证数据集,进行了不固定成分股的滚动投资,以避免样本选择性偏误,并将SGLasso-MV与几种经典的投资组合策略进行了比较.结果显示,相比其他同样包含期望收益率估计量的策略,SGLasso-MV的权重能够在样本外实现显著更低的标准差风险和更低的换手率.展开更多
文摘为了利用因子排序组合的信息并保证组合权重具有一定的稀疏性,基于Sparse Group Lasso (SGLasso)和经典的均值-方差(mean-variance,MV)投资组合策略,构建了能够对高维资产数据集进行投资的SGLasso-MV策略.与Lasso和GLasso相比,SGLasso能够同时实现组内和组间的稀疏性,并利用了特征分组信息,因此适用于改进MV策略输出权重的不稳定性和高误差性问题.在实证数据方面,利用A股1997年至2019年所有可用A股股票的日际实证数据集,进行了不固定成分股的滚动投资,以避免样本选择性偏误,并将SGLasso-MV与几种经典的投资组合策略进行了比较.结果显示,相比其他同样包含期望收益率估计量的策略,SGLasso-MV的权重能够在样本外实现显著更低的标准差风险和更低的换手率.