This paper presents a simple and cost-effective method for the production of micro-sized silicon carbide whiskers at high yield and the effect on heat transfer enhancement for the whisker laden fluids. For SiC whisker...This paper presents a simple and cost-effective method for the production of micro-sized silicon carbide whiskers at high yield and the effect on heat transfer enhancement for the whisker laden fluids. For SiC whisker synthesis, the starting powder mix- ture is obtained by milling short carbon fibers with the white ashes of rice hulls. Calcina:ion in argon, together with the subse- quent purification process, results in a high yield of SiC whiskers, which possess a diameter of 200-400 nm and a length of several tens of microns. The formation of the whiskers is discussed according to VS growth mechanism. Convective heat transfer performance in small channel tubes is then studied for fluid systems mixed with those micro-sized SiC whiskers at different concentrations. The heat transfer coefficient of SiC containing fluid can be significantly improved in comparison to the base fluid.展开更多
基金supported by Louisiana Board of Regents ITRS Program(Grant Nos.LEQSF(2007-10)-RD-B-02 and CFAW-Ceramics LLC)
文摘This paper presents a simple and cost-effective method for the production of micro-sized silicon carbide whiskers at high yield and the effect on heat transfer enhancement for the whisker laden fluids. For SiC whisker synthesis, the starting powder mix- ture is obtained by milling short carbon fibers with the white ashes of rice hulls. Calcina:ion in argon, together with the subse- quent purification process, results in a high yield of SiC whiskers, which possess a diameter of 200-400 nm and a length of several tens of microns. The formation of the whiskers is discussed according to VS growth mechanism. Convective heat transfer performance in small channel tubes is then studied for fluid systems mixed with those micro-sized SiC whiskers at different concentrations. The heat transfer coefficient of SiC containing fluid can be significantly improved in comparison to the base fluid.