期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种特征融合的小目标车辆检测算法
被引量:
5
1
作者
罗鹏飞
李明
《河南科技大学学报(自然科学版)》
CAS
北大核心
2019年第2期40-44,107,108,共7页
针对目前基于深度卷积神经网络的目标检测中,高维特征会遗失小区域特征及目标位置信息,从而导致对小目标的识别率很低的问题,提出了一种利用特征层融合进行检测的算法。利用图像插值方法,将高维特征图与低维特征图转化为同样尺寸,通过...
针对目前基于深度卷积神经网络的目标检测中,高维特征会遗失小区域特征及目标位置信息,从而导致对小目标的识别率很低的问题,提出了一种利用特征层融合进行检测的算法。利用图像插值方法,将高维特征图与低维特征图转化为同样尺寸,通过设置一个网络自学习参数来对各特征图进行有效融合,使得最终进行检测的特征图同时具有丰富的语义信息与尽可能多的目标特征信息。构建了一个简单的卷积神经网络模型,对道路场景中的远距离车辆进行检测,在KITTI数据集上进行测试。测试结果表明:与主流的FasterRCNN和SSD检测框架相比,该模型的检测召回率分别提高了5. 9%和14. 6%。
展开更多
关键词
小目标车辆检测
Faster-RCNN
特征层融合
卷积神经网络
下载PDF
职称材料
题名
一种特征融合的小目标车辆检测算法
被引量:
5
1
作者
罗鹏飞
李明
机构
武汉大学计算机学院
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2019年第2期40-44,107,108,共7页
基金
国家重点研发计划基金项目(2016YFB0100901)
文摘
针对目前基于深度卷积神经网络的目标检测中,高维特征会遗失小区域特征及目标位置信息,从而导致对小目标的识别率很低的问题,提出了一种利用特征层融合进行检测的算法。利用图像插值方法,将高维特征图与低维特征图转化为同样尺寸,通过设置一个网络自学习参数来对各特征图进行有效融合,使得最终进行检测的特征图同时具有丰富的语义信息与尽可能多的目标特征信息。构建了一个简单的卷积神经网络模型,对道路场景中的远距离车辆进行检测,在KITTI数据集上进行测试。测试结果表明:与主流的FasterRCNN和SSD检测框架相比,该模型的检测召回率分别提高了5. 9%和14. 6%。
关键词
小目标车辆检测
Faster-RCNN
特征层融合
卷积神经网络
Keywords
small target detection
Faster-RCNN
feature layer fusion
convolution neural network
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种特征融合的小目标车辆检测算法
罗鹏飞
李明
《河南科技大学学报(自然科学版)》
CAS
北大核心
2019
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部