目的提高磁力研磨法光整小直径TC4管内表面时的研磨效率。方法将多个径向充磁的磁极组成柔性磁极链放置在工件的内部,致使整个加工区域的磁感应强度得到大幅度增强,再配合多种运动,完成对小直径细长管内表面的高效精密抛光。利用响应面...目的提高磁力研磨法光整小直径TC4管内表面时的研磨效率。方法将多个径向充磁的磁极组成柔性磁极链放置在工件的内部,致使整个加工区域的磁感应强度得到大幅度增强,再配合多种运动,完成对小直径细长管内表面的高效精密抛光。利用响应面法分析了工件转速、磨粒粒径和研磨液用量的交互作用对研磨效率的影响规律。结果在磨粒的平均粒径保持不变时,转速在18 000~20 000 r/min范围内时,表面粗糙度值趋于稳定,研磨液用量为8 m L时,表面粗糙度值达到最低。研磨液用量保持不变、转速在18000~20 000 r/min范围内时,表面粗糙度趋于稳定。磨粒的平均粒径为250μm时,表面粗糙度值达到最低。工件转速不变、研磨液用量为8 m L、磨粒的平均粒径为250μm时,工件表面粗糙度值达到最低。经过40 min的研磨,工件各位置的表面粗糙度值Ra稳定至0.35~0.2μm。结论优化后的工艺参数组合为:工件转速20000 r/min、研磨液用量8 m L、磁性磨粒的平均粒径250μm。加工后工件内表面加工均匀性显著提升,原始缺陷被完全去除,达到最佳效果。展开更多
文摘目的提高磁力研磨法光整小直径TC4管内表面时的研磨效率。方法将多个径向充磁的磁极组成柔性磁极链放置在工件的内部,致使整个加工区域的磁感应强度得到大幅度增强,再配合多种运动,完成对小直径细长管内表面的高效精密抛光。利用响应面法分析了工件转速、磨粒粒径和研磨液用量的交互作用对研磨效率的影响规律。结果在磨粒的平均粒径保持不变时,转速在18 000~20 000 r/min范围内时,表面粗糙度值趋于稳定,研磨液用量为8 m L时,表面粗糙度值达到最低。研磨液用量保持不变、转速在18000~20 000 r/min范围内时,表面粗糙度趋于稳定。磨粒的平均粒径为250μm时,表面粗糙度值达到最低。工件转速不变、研磨液用量为8 m L、磨粒的平均粒径为250μm时,工件表面粗糙度值达到最低。经过40 min的研磨,工件各位置的表面粗糙度值Ra稳定至0.35~0.2μm。结论优化后的工艺参数组合为:工件转速20000 r/min、研磨液用量8 m L、磁性磨粒的平均粒径250μm。加工后工件内表面加工均匀性显著提升,原始缺陷被完全去除,达到最佳效果。