期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
大型40Cr钢轴小线能量堆焊修复 被引量:1
1
作者 孔伟 杨建立 欧斌 《焊接》 2000年第7期41-42,共2页
关键词 制糖厂 40Cr钢轴 小线能量 堆焊
下载PDF
汽轮机汽缸裂纹焊补新工艺 被引量:1
2
作者 于霖清 《东北电力技术》 1995年第9期46-48,共3页
汽轮机汽缸裂纹焊补新工艺辽宁发电厂于霖清现代汽轮机汽缸及有关部件,在运行一定时间以后,在铸造缺陷,老焊补区的热影响区。变径应力峰值区,抽汽疏水孔沿,喷嘴室。接合面,螺母孔、隔板槽等部位,会产生各种形态的裂纹,其长度小... 汽轮机汽缸裂纹焊补新工艺辽宁发电厂于霖清现代汽轮机汽缸及有关部件,在运行一定时间以后,在铸造缺陷,老焊补区的热影响区。变径应力峰值区,抽汽疏水孔沿,喷嘴室。接合面,螺母孔、隔板槽等部位,会产生各种形态的裂纹,其长度小则数毫米,长则达数百毫米,其深度浅... 展开更多
关键词 汽轮机汽缸 过渡层 冷焊工艺 熔合线 热锤击 焊缝 热应力 汽缸裂纹 小线能量 淬硬组织
下载PDF
“长江重件1号”滚装船襟翼舵安装关键技术
3
作者 南平 《水利电力机械》 2007年第9期35-36,62,共3页
介绍了在襟翼舵的安装中,利用定位安装尺寸和小线能量、高焊速、窄焊道焊接等技术工艺来控制焊接变形、防止裂纹产生,保证了安装精度,提高了船舶的回转性能及操纵性能。
关键词 襟翼舵 定位安装 焊接工艺分析及评定 小线能量 高焊速 窄焊道焊接
下载PDF
Least energy solutions for semilinear Schrdinger equation with electromagnetic fields and critical growth 被引量:2
4
作者 TANG ZhongWei WANG YanLi 《Science China Mathematics》 SCIE CSCD 2015年第11期2317-2328,共12页
We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negat... We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negative in some domain. Moreover, the potential behaves like potential well when the parameter A is large. Using variational methods combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter A becomes large, localized near the bottom of the potential well. Our result is an extension of the corresponding result for the SchrSdinger equation which involves critical growth but does not involve electromagnetic fields. 展开更多
关键词 semilinear Schr6dinger equation least energy solution critical growth electromagnetic fields
原文传递
Least energy solutions of nonlinear Schr odinger equations involving the fractional Laplacian and potential wells 被引量:1
5
作者 NIU MiaoMiao TANG ZhongWei 《Science China Mathematics》 SCIE CSCD 2017年第2期261-276,共16页
We are concerned with the existence of least energy solutions of nonlinear Schrodinger equations involving the fractional Laplacian(-△)%s u(x)+λV(x)u(x)=u(x)^(p-1),u(x)〉=0,x∈R^N,for sufficiently lar... We are concerned with the existence of least energy solutions of nonlinear Schrodinger equations involving the fractional Laplacian(-△)%s u(x)+λV(x)u(x)=u(x)^(p-1),u(x)〉=0,x∈R^N,for sufficiently large λ,2〈p〈N-2s^-2N for N≥2. V(x) is a real continuous function on RN. Using variational methods we prove the existence of least energy solution uλ(x) which localizes near the potential well int V-1 (0) for A large. Moreover, if the zero sets int V-1 (0) of V(x) include more than one isolated component, then ux(x) will be trapped around all the isolated components. However, in Laplacian case s = 1, when the parameter A is large, the corresponding least energy solution will be trapped around only one isolated component and become arbitrarily small in other components of int V^-1(0). This is the essential difference with the Laplacian problems since the operator (-△)s is nonlocal. 展开更多
关键词 nonlinear SchrSdinger equation least energy solution fractional Laplacian variational methods
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部