使用人工蜂群算法实现对基于Mie散射理论的小角前向散射法的颗粒系粒径多峰分布的反演,并进行仿真和实验.对服从正态分布、Rosin-Rammler分布、Johnson’s S B分布函数的均匀球形颗粒系进行仿真.分别模拟了单峰、双峰和三峰分布的颗粒群...使用人工蜂群算法实现对基于Mie散射理论的小角前向散射法的颗粒系粒径多峰分布的反演,并进行仿真和实验.对服从正态分布、Rosin-Rammler分布、Johnson’s S B分布函数的均匀球形颗粒系进行仿真.分别模拟了单峰、双峰和三峰分布的颗粒群,人工蜂群算法均能较好地实现颗粒粒径的反演.在单峰分布时,颗粒重量频率分布曲线的相对均方根误差低至3.53×10^-8.与独立模式Philip-Twomey-NNLS算法和Chahine算法相比,人工蜂群算法的仿真反演精度更高,其双峰宽分布的颗粒重量频率分布曲线的相对均方根误差分别由3.38%和2.70%降至1.53%,且随着峰数增多、分布曲线宽度变窄和噪声增加,Philip-Twomey-NNLS算法和Chahine算法的误差分别增加至44.99%和24.36%,而人工蜂群算法的误差为18.22%.搭建小角前向散射法颗粒测量系统,分别采集国家标准颗粒35μm单一颗粒群和30μm、51μm混合颗粒群的散射图像进行实验研究,均得到较高精度的反演结果,与Philip-Twomey-NNLS算法相比,其特征粒径的相对误差可降低50%左右,特征参数的相对误差在5%以内.展开更多
Phase behaviors of different binary systems involving 1-dodecyl-3-methylimidazolium chlo- ride ([C12mim]Cl) and H20, [C12mim]Cl and different alcohols (1-butanol, 1-pentanol, 1- hexanol and 1-octanol) are investig...Phase behaviors of different binary systems involving 1-dodecyl-3-methylimidazolium chlo- ride ([C12mim]Cl) and H20, [C12mim]Cl and different alcohols (1-butanol, 1-pentanol, 1- hexanol and 1-octanol) are investigated at 25 ℃. Hexagonal liquid crystal phase (H1) is identified in [C12mim]Cl/H2O system, and lamellar liquid-crystalline (Lα) phase is found in [C12mim]Cl/alcohols systems by using polarized optical microscopy and small-angle X-ray scattering techniques. The formation of such phases is considered as a synergetic result of the solvatophobic force and the hydrogen-bonded network comprising an imidazoliuin ring, chloride ion and water (or alcohols), which can be confirmed by Fourier transform infrared spectra. It is noticeable that in [C12mim]Cl/1-octanol system, the lattice spacings of lamellar phase increase with increasing C12mimCl concentration, which is opposite to the results of [C12mim]Cl/H2O system. This may result mainly from stronger static repulsion among hydrophilic headgroups of imidazolium salts arranged in the bilayers of lamellar structures. Further measurements by differential scanning calorimetry indicate that the lamellar phase is stable within a wide temperature range above room temperature. However, the lattice spacings decrease with the increase of temperature, which may. be due to the softening of the hydrocarbon chain of [C12mim]Cl molecules. In different alcohols systems, it is found that the lamellar lyotropic liquid crystal structure is easier to be formed when the carbon chain length becomes longer.展开更多
文摘使用人工蜂群算法实现对基于Mie散射理论的小角前向散射法的颗粒系粒径多峰分布的反演,并进行仿真和实验.对服从正态分布、Rosin-Rammler分布、Johnson’s S B分布函数的均匀球形颗粒系进行仿真.分别模拟了单峰、双峰和三峰分布的颗粒群,人工蜂群算法均能较好地实现颗粒粒径的反演.在单峰分布时,颗粒重量频率分布曲线的相对均方根误差低至3.53×10^-8.与独立模式Philip-Twomey-NNLS算法和Chahine算法相比,人工蜂群算法的仿真反演精度更高,其双峰宽分布的颗粒重量频率分布曲线的相对均方根误差分别由3.38%和2.70%降至1.53%,且随着峰数增多、分布曲线宽度变窄和噪声增加,Philip-Twomey-NNLS算法和Chahine算法的误差分别增加至44.99%和24.36%,而人工蜂群算法的误差为18.22%.搭建小角前向散射法颗粒测量系统,分别采集国家标准颗粒35μm单一颗粒群和30μm、51μm混合颗粒群的散射图像进行实验研究,均得到较高精度的反演结果,与Philip-Twomey-NNLS算法相比,其特征粒径的相对误差可降低50%左右,特征参数的相对误差在5%以内.
文摘Phase behaviors of different binary systems involving 1-dodecyl-3-methylimidazolium chlo- ride ([C12mim]Cl) and H20, [C12mim]Cl and different alcohols (1-butanol, 1-pentanol, 1- hexanol and 1-octanol) are investigated at 25 ℃. Hexagonal liquid crystal phase (H1) is identified in [C12mim]Cl/H2O system, and lamellar liquid-crystalline (Lα) phase is found in [C12mim]Cl/alcohols systems by using polarized optical microscopy and small-angle X-ray scattering techniques. The formation of such phases is considered as a synergetic result of the solvatophobic force and the hydrogen-bonded network comprising an imidazoliuin ring, chloride ion and water (or alcohols), which can be confirmed by Fourier transform infrared spectra. It is noticeable that in [C12mim]Cl/1-octanol system, the lattice spacings of lamellar phase increase with increasing C12mimCl concentration, which is opposite to the results of [C12mim]Cl/H2O system. This may result mainly from stronger static repulsion among hydrophilic headgroups of imidazolium salts arranged in the bilayers of lamellar structures. Further measurements by differential scanning calorimetry indicate that the lamellar phase is stable within a wide temperature range above room temperature. However, the lattice spacings decrease with the increase of temperature, which may. be due to the softening of the hydrocarbon chain of [C12mim]Cl molecules. In different alcohols systems, it is found that the lamellar lyotropic liquid crystal structure is easier to be formed when the carbon chain length becomes longer.