[Objective] The paper aims to explore the influences of source sink change of wheat at different densities on wheat yield.[Method] 225 (D1) and 320 plant/m2(D2) were adopted,then cutting flag leaf (L1),the secon...[Objective] The paper aims to explore the influences of source sink change of wheat at different densities on wheat yield.[Method] 225 (D1) and 320 plant/m2(D2) were adopted,then cutting flag leaf (L1),the second last leaf (L2),removing upper part of spike (L3) and controlling (CK) were used to conduct field experiment.[Result] The results showed that both of the two densities of wheat's 1 000-grain weight and grain filling rate after anthesis in a decreasing order of L3〉CK〉L2〉L1,and the grain weight per spike and dry matter amount translated after anthesis turned to be CK〉L2〉L1 〉L3.[Conclusion].Both of leaf-cutting and spikelet removing decreased the grain weight per spike and dry matter amount translated after anthesis.Removing upper part of spike increased wheat's 1 000-grain weight.But the decreasing of the sink and dry matter amount translated contributed to the decreasing of the yield of wheat.展开更多
Based on the critical gap phenomenon of the intestinal capsule robot,a variable-diameter capsule robot with radial gap self-compensation is developed in this paper.With the functional variation principle,a fluid dynam...Based on the critical gap phenomenon of the intestinal capsule robot,a variable-diameter capsule robot with radial gap self-compensation is developed in this paper.With the functional variation principle,a fluid dynamic pressure model satisfying the boundary conditions of the outer surface of capsule robot with screw blades is derived.The critical gap phenomenon is studied theoretically and experimentally based on the end effect and the dynamic balance characteristics of the fluid on the surface of capsule robot.The concept of start-up rotation speed is defined,the relationship between the start-up rotation speed and the spiral parameters of capsule robot is investigated.The strategy for implementing drive and control on several capsule robots under the same rotational magnetic field is proposed,and by defining the start-up curves of several capsule robots with the similar motion regulation as the objective functions,genetic algorithm is employed to optimize the spiral parameters of several capsule robots.Experiments have shown that the proposed drive and control strategy for several capsule robots can be implemented effectively.It has a good prospect of application inside intestine to realize the drive and control on several capsule robots for different medical purposes.展开更多
A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems(MEMS) accelerometers(instead of gyroscope),which is employed in 3D mouse syst...A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems(MEMS) accelerometers(instead of gyroscope),which is employed in 3D mouse system.To sense 3D angular motion,the static property of MEMS accelerometer,sensitive to gravity acceleration,is exploited.With the three outputs of configured accelerometers,the proposed model is implemented to get the rotary motion of the rigid object.In order to validate the effectiveness of the proposed model,an input device is developed with the configuration of the scheme.Experimental results show that a simulated 3D cube can accurately track the rotation of the input device.The result indicates the feasibility and effectiveness of the proposed model in the 3D mouse system.展开更多
基金Supported by Jiangsu High School Natural Science Fund(09KJB210004)Undergraduate Practice Innovation Project of Nanjing University of Information Science & Technology (09CX0025 )Educational Reform Project of Nanjing University of Information Science &Technology (09JY0036)~~
文摘[Objective] The paper aims to explore the influences of source sink change of wheat at different densities on wheat yield.[Method] 225 (D1) and 320 plant/m2(D2) were adopted,then cutting flag leaf (L1),the second last leaf (L2),removing upper part of spike (L3) and controlling (CK) were used to conduct field experiment.[Result] The results showed that both of the two densities of wheat's 1 000-grain weight and grain filling rate after anthesis in a decreasing order of L3〉CK〉L2〉L1,and the grain weight per spike and dry matter amount translated after anthesis turned to be CK〉L2〉L1 〉L3.[Conclusion].Both of leaf-cutting and spikelet removing decreased the grain weight per spike and dry matter amount translated after anthesis.Removing upper part of spike increased wheat's 1 000-grain weight.But the decreasing of the sink and dry matter amount translated contributed to the decreasing of the yield of wheat.
基金supported by National Natural Science Foundation of China(Grant Nos. 60675054, 60875064)Self-Planned Task of State Key Laboratory of Robotics and System (HIT) (Grant No. SKLRS200903B)
文摘Based on the critical gap phenomenon of the intestinal capsule robot,a variable-diameter capsule robot with radial gap self-compensation is developed in this paper.With the functional variation principle,a fluid dynamic pressure model satisfying the boundary conditions of the outer surface of capsule robot with screw blades is derived.The critical gap phenomenon is studied theoretically and experimentally based on the end effect and the dynamic balance characteristics of the fluid on the surface of capsule robot.The concept of start-up rotation speed is defined,the relationship between the start-up rotation speed and the spiral parameters of capsule robot is investigated.The strategy for implementing drive and control on several capsule robots under the same rotational magnetic field is proposed,and by defining the start-up curves of several capsule robots with the similar motion regulation as the objective functions,genetic algorithm is employed to optimize the spiral parameters of several capsule robots.Experiments have shown that the proposed drive and control strategy for several capsule robots can be implemented effectively.It has a good prospect of application inside intestine to realize the drive and control on several capsule robots for different medical purposes.
文摘A new scheme is proposed to model 3D angular motion of a revolving regular object with miniature, low-cost micro electro mechanical systems(MEMS) accelerometers(instead of gyroscope),which is employed in 3D mouse system.To sense 3D angular motion,the static property of MEMS accelerometer,sensitive to gravity acceleration,is exploited.With the three outputs of configured accelerometers,the proposed model is implemented to get the rotary motion of the rigid object.In order to validate the effectiveness of the proposed model,an input device is developed with the configuration of the scheme.Experimental results show that a simulated 3D cube can accurately track the rotation of the input device.The result indicates the feasibility and effectiveness of the proposed model in the 3D mouse system.