N-heterocyclic carbene (NHC) is both a family of strong o-donor ligands for transition metals and a privileged class of organocatalysts with synthetic potential that rivals popu- lar amine and phosphoric acid cataly...N-heterocyclic carbene (NHC) is both a family of strong o-donor ligands for transition metals and a privileged class of organocatalysts with synthetic potential that rivals popu- lar amine and phosphoric acid catalysts. NHC was found as a key catalytic species in thiamine diphosphate catalyzed biochemical reactions [1]. However, due to their inherent chemical instability, free NHCs had not been isolated until 1991 by Ardungo et al. [2]. Since then, the use of chiral NHC as a versatile organocatalyst has enjoyed tremendous advances and has helped to transform modem synthetic chemistry. There are over 2000 research papers dealing with both "N-heterocyclic carbene" and "Catalysis" in the past 15 years [3].展开更多
In recent years, with the rapid development of polymer science, the application of classical named reactions has transferred from small-molecule compounds to polymers. The versatility of named reactions in terms of mo...In recent years, with the rapid development of polymer science, the application of classical named reactions has transferred from small-molecule compounds to polymers. The versatility of named reactions in terms of monomer selection, solvent environment, reaction temperature, and post-modification permits the synthesis of sophisticated macromolecular structures under conditions where other reaction processes will not operate. In this review, we divided the named reactions employed in polymer-chain synthesis into three types: transition metal-catalyzed cross-coupling reactions, metal-free cross-coupling reactions, and multi-components reactions. Thus, we focused our discussion on the progress in the utilization of these named reactions in polymer synthesis.展开更多
基金the National Natural Science Foundation of China (21372013, 21572004)the Shenzhen Peacock Program (KQTD201103)
文摘N-heterocyclic carbene (NHC) is both a family of strong o-donor ligands for transition metals and a privileged class of organocatalysts with synthetic potential that rivals popu- lar amine and phosphoric acid catalysts. NHC was found as a key catalytic species in thiamine diphosphate catalyzed biochemical reactions [1]. However, due to their inherent chemical instability, free NHCs had not been isolated until 1991 by Ardungo et al. [2]. Since then, the use of chiral NHC as a versatile organocatalyst has enjoyed tremendous advances and has helped to transform modem synthetic chemistry. There are over 2000 research papers dealing with both "N-heterocyclic carbene" and "Catalysis" in the past 15 years [3].
基金supported by the National Natural Science Foundation of China(21174158,21274162,21474127)Shanghai Scientific and Technological Innovation Project(12JC1410500,13ZR1464800,14QA1404500,14520720100)the State Key Laboratory of Molecular Engineering of Polymers(K2015-02)
文摘In recent years, with the rapid development of polymer science, the application of classical named reactions has transferred from small-molecule compounds to polymers. The versatility of named reactions in terms of monomer selection, solvent environment, reaction temperature, and post-modification permits the synthesis of sophisticated macromolecular structures under conditions where other reaction processes will not operate. In this review, we divided the named reactions employed in polymer-chain synthesis into three types: transition metal-catalyzed cross-coupling reactions, metal-free cross-coupling reactions, and multi-components reactions. Thus, we focused our discussion on the progress in the utilization of these named reactions in polymer synthesis.