Rapid and sensitive detection of various analytes is in high demand.Apart from its application in genome editing,CRISPR-Cas also shows promises in nucleic acid detection applications.To further exploit the potential o...Rapid and sensitive detection of various analytes is in high demand.Apart from its application in genome editing,CRISPR-Cas also shows promises in nucleic acid detection applications.To further exploit the potential of CRISPR-Cas for detection of diverse analytes,we present a versatile biosensing platform that couples the excellent affinity of aptamers for broad-range analytes with the collateral single-strand DNA cleavage activity of CRISPR-Cas12 a.We demonstrated that the biosensors developed by this platform can be used to detect protein and small molecule in human serum with a complicated background,i.e.,the tumor marker alpha fetoprotein and cocaine with the detection limits of 0.07 fmol/L and 0.34 lmol/L,respectively,highlighting the advantages of simplicity,sensitivity,short detection time,and low cost compared with the state-of-the-art biosensing approaches.Altogether,this biosensing platform with plug-and-play design show great potential in the detection of diverse analytes.展开更多
The maximal matching problem (MMP) is to find maximal edge subsets in a given undirected graph, that no pair of edges are adjacent in the subsets. It is a vitally important NP-complete problem in graph theory and ap...The maximal matching problem (MMP) is to find maximal edge subsets in a given undirected graph, that no pair of edges are adjacent in the subsets. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications in optimal combination and linear programming fields. It can be difficultly solved by the electronic computer in exponential level time. Meanwhile in previous studies deoxyribonucleic acid (DNA) molecular operations usually were used to solve NP-complete continuous path search problems, e.g. HPP, traveling salesman problem, rarely for NP-hard problems with discrete vertices or edges solutions, such as the minimum vertex cover problem, graph coloring problem and so on. In this paper, we present a DNA algorithm for solving the MMP with DNA molecular operations. For an undirected graph with n vertices and m edges, we reasonably design fixed length DNA strands representing vertices and edges of the graph, take appropriate steps and get the solutions of the MMP in proper length range using O(n^3) time. We extend the application of DNA molecular operations and simultaneously simplify the complexity of the computation.展开更多
基金supported by the National Natural Science Foundation of China (31770055, 31922002, 31720103901, and 31772242)the 111 Project (B18022)+4 种基金the Fundamental Research Funds for the Central Universities (22221818014)the Shanghai Science and Technology Commission (18JC1411900)the Young Scientists Innovation Promotion Association of Chinese Academy of Sciences (2016087) to Weishan Wangthe Shandong Taishan Scholar Program of China to Lixin Zhangthe Open Project Funding of the State Key Laboratory of Bioreactor Engineering
文摘Rapid and sensitive detection of various analytes is in high demand.Apart from its application in genome editing,CRISPR-Cas also shows promises in nucleic acid detection applications.To further exploit the potential of CRISPR-Cas for detection of diverse analytes,we present a versatile biosensing platform that couples the excellent affinity of aptamers for broad-range analytes with the collateral single-strand DNA cleavage activity of CRISPR-Cas12 a.We demonstrated that the biosensors developed by this platform can be used to detect protein and small molecule in human serum with a complicated background,i.e.,the tumor marker alpha fetoprotein and cocaine with the detection limits of 0.07 fmol/L and 0.34 lmol/L,respectively,highlighting the advantages of simplicity,sensitivity,short detection time,and low cost compared with the state-of-the-art biosensing approaches.Altogether,this biosensing platform with plug-and-play design show great potential in the detection of diverse analytes.
文摘The maximal matching problem (MMP) is to find maximal edge subsets in a given undirected graph, that no pair of edges are adjacent in the subsets. It is a vitally important NP-complete problem in graph theory and applied mathematics, having numerous real life applications in optimal combination and linear programming fields. It can be difficultly solved by the electronic computer in exponential level time. Meanwhile in previous studies deoxyribonucleic acid (DNA) molecular operations usually were used to solve NP-complete continuous path search problems, e.g. HPP, traveling salesman problem, rarely for NP-hard problems with discrete vertices or edges solutions, such as the minimum vertex cover problem, graph coloring problem and so on. In this paper, we present a DNA algorithm for solving the MMP with DNA molecular operations. For an undirected graph with n vertices and m edges, we reasonably design fixed length DNA strands representing vertices and edges of the graph, take appropriate steps and get the solutions of the MMP in proper length range using O(n^3) time. We extend the application of DNA molecular operations and simultaneously simplify the complexity of the computation.