农田生态系统碳足迹分析有利于找出问题,为低碳农业提供支撑。本文基于碳足迹全循环指标系统,以山东省泰安、滕州、龙口三地的中高产田为例,研究了耕作方式对中高产田耗碳足迹、固碳足迹、净耗碳(△GHG)、单位产值碳足迹(CFv)及单位产...农田生态系统碳足迹分析有利于找出问题,为低碳农业提供支撑。本文基于碳足迹全循环指标系统,以山东省泰安、滕州、龙口三地的中高产田为例,研究了耕作方式对中高产田耗碳足迹、固碳足迹、净耗碳(△GHG)、单位产值碳足迹(CFv)及单位产量碳足迹(CFy)的影响。结果表明:农田生态系统耗碳足迹中,化合物耗碳中N肥和土壤N_2O耗碳占了79.69%~92.53%,其中仅N肥就占了53.82%~62.49%;机电油耗碳的80%以上是灌溉、耕作、播种和收获产生的;有机耗碳中98.83%以上是秸秆耗碳。农田生态系统中主要是籽粒与秸秆固碳,籽粒固碳占总固碳的39.05%~52.64%;滕州的总固碳比其他两个城市高出196.3~7 801.5 kg CO_2/hm^2(旋耕除外);三地农田生态系统的ΔGHG值在-3 524.7^-8 774.3 kg CO_2/hm^2,均表现为碳汇;夏玉米季的净固碳高于冬小麦季;翻耕的净固碳量明显高于旋耕和耙耕。在冬小麦-夏玉米一年两熟条件下,夏玉米的CFv和CFy均显著高于冬小麦;CFv和CFy均表现为冬小麦翻耕-夏玉米免耕>冬小麦旋耕-夏玉米免耕>冬小麦耙耕-夏玉米免耕;地区间的CFv和CFy规律性不明显。因此,提高农业机械作业效率、减少机电油耗,提高氮肥和水分利用效率,建立合适的土壤耕作制度,提高作物产量,是山东省提高净固碳能力的重要突破方向。同时,继续挖掘夏玉米的固碳潜力、提高冬小麦的固碳能力,是作物育种与栽培应该重点解决的问题。展开更多
应用静态箱/气相色谱法对旱地小麦-玉米轮作田和种菜历史超过20a的菜地进行了N2O排放的定位观测,分析了旱地和菜地生态系统N2O排放特征的差异,及施氮、土壤温度、土壤湿度和作物参与对两种农田系统N2O排放的不同影响。结果表明,不施氮...应用静态箱/气相色谱法对旱地小麦-玉米轮作田和种菜历史超过20a的菜地进行了N2O排放的定位观测,分析了旱地和菜地生态系统N2O排放特征的差异,及施氮、土壤温度、土壤湿度和作物参与对两种农田系统N2O排放的不同影响。结果表明,不施氮情况下,旱地和菜地N2O排放通量分别为17.8±5.6和50.7±13.3μg m-2h-1,菜地N2O排放通量是旱地农田的3.1倍。在施氮(N 150 kg hm-2)情况下,菜地N2O排放系数较旱地高39.0%。粮食作物参与和蔬菜作物参与对增加各自农田生态系统N2O排放量的贡献无明显差异。旱地和菜地不同作物季N2O排放量的差异主要是由于作物生育期长短不同造成单位时间施肥强度存在差异。所以,根据作物生育期特点调节施肥量可能会减少农田生态系统N2O排放量,并且由于菜地各蔬菜生育期长短的差异更大,因此,菜地若能实现精量施肥,其N2O减排的潜力可能大于旱地农田。展开更多
该试验在玉米单作茬口、玉米-花生间作茬口(间作茬口)、花生单作茬口共3种茬口,以及0 kg P_2O_5·hm^(-2)(P_0)和180 kg P_2O_5·hm^(-2)(P_1) 2个磷水平下,研究了间作茬口与施磷对冬小麦分蘖、叶面积指数(LAI)、干物质积累、...该试验在玉米单作茬口、玉米-花生间作茬口(间作茬口)、花生单作茬口共3种茬口,以及0 kg P_2O_5·hm^(-2)(P_0)和180 kg P_2O_5·hm^(-2)(P_1) 2个磷水平下,研究了间作茬口与施磷对冬小麦分蘖、叶面积指数(LAI)、干物质积累、光合特性及产量的影响机制,为玉米花生间作与小麦-玉米复种轮作提供理论依据。结果表明:(1)间作茬口较玉米茬口显著提高了冬小麦有效分蘖数、LAI、净光合速率和干物质积累量,并提高了冬小麦旗叶的SPAD值、CO_2饱和点、光饱和点及最大净光合速率(P_(nmax))、表观量子效率(AQY)、羧化效率(CE)、最大羧化速率(V_(cmax))、最大RUBP再生的电子传递速率(J_(max))和最大磷酸丙糖利用速率(V_(TPU)),且CE、V_(cmax)、V_(TPU)的增幅均达到显著水平(P<0.05),有效改善了冬小麦产量构成,显著提高籽粒产量(P<0.05)。(2)间作茬口较花生茬口提高了冬小麦乳熟期的P_(nmax)、AQY、CE,增加了穗粒数和粒重,提高了产量。(3)与不施磷相比,施磷180 kg P_2O_5·hm^(-2)显著促进间作茬口冬小麦生长,显著提高冬小麦旗叶的SPAD值、P_(nmax)、AQY、CE、V_(cmax)、J_(max)、V_(TPU)和籽粒产量(P<0.05)。研究发现,间作茬口较玉米茬口能有效增强冬小麦旗叶表观量子效率和CO_2羧化能力,显著提高小麦花后光合能力,促进冬小麦生长,从而增加穗粒数、粒重和籽粒产量,且间作茬口结合施磷180 kg P_2O_5·hm^(-2)效果更好。展开更多
文摘农田生态系统碳足迹分析有利于找出问题,为低碳农业提供支撑。本文基于碳足迹全循环指标系统,以山东省泰安、滕州、龙口三地的中高产田为例,研究了耕作方式对中高产田耗碳足迹、固碳足迹、净耗碳(△GHG)、单位产值碳足迹(CFv)及单位产量碳足迹(CFy)的影响。结果表明:农田生态系统耗碳足迹中,化合物耗碳中N肥和土壤N_2O耗碳占了79.69%~92.53%,其中仅N肥就占了53.82%~62.49%;机电油耗碳的80%以上是灌溉、耕作、播种和收获产生的;有机耗碳中98.83%以上是秸秆耗碳。农田生态系统中主要是籽粒与秸秆固碳,籽粒固碳占总固碳的39.05%~52.64%;滕州的总固碳比其他两个城市高出196.3~7 801.5 kg CO_2/hm^2(旋耕除外);三地农田生态系统的ΔGHG值在-3 524.7^-8 774.3 kg CO_2/hm^2,均表现为碳汇;夏玉米季的净固碳高于冬小麦季;翻耕的净固碳量明显高于旋耕和耙耕。在冬小麦-夏玉米一年两熟条件下,夏玉米的CFv和CFy均显著高于冬小麦;CFv和CFy均表现为冬小麦翻耕-夏玉米免耕>冬小麦旋耕-夏玉米免耕>冬小麦耙耕-夏玉米免耕;地区间的CFv和CFy规律性不明显。因此,提高农业机械作业效率、减少机电油耗,提高氮肥和水分利用效率,建立合适的土壤耕作制度,提高作物产量,是山东省提高净固碳能力的重要突破方向。同时,继续挖掘夏玉米的固碳潜力、提高冬小麦的固碳能力,是作物育种与栽培应该重点解决的问题。
文摘应用静态箱/气相色谱法对旱地小麦-玉米轮作田和种菜历史超过20a的菜地进行了N2O排放的定位观测,分析了旱地和菜地生态系统N2O排放特征的差异,及施氮、土壤温度、土壤湿度和作物参与对两种农田系统N2O排放的不同影响。结果表明,不施氮情况下,旱地和菜地N2O排放通量分别为17.8±5.6和50.7±13.3μg m-2h-1,菜地N2O排放通量是旱地农田的3.1倍。在施氮(N 150 kg hm-2)情况下,菜地N2O排放系数较旱地高39.0%。粮食作物参与和蔬菜作物参与对增加各自农田生态系统N2O排放量的贡献无明显差异。旱地和菜地不同作物季N2O排放量的差异主要是由于作物生育期长短不同造成单位时间施肥强度存在差异。所以,根据作物生育期特点调节施肥量可能会减少农田生态系统N2O排放量,并且由于菜地各蔬菜生育期长短的差异更大,因此,菜地若能实现精量施肥,其N2O减排的潜力可能大于旱地农田。
基金supported by Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-432)National Natural Science Foundation of China(GrantNo.30590381,Grant No.30700110)International Partnership Project of CAS(Grant No.CXTD-Z2005-1)
文摘该试验在玉米单作茬口、玉米-花生间作茬口(间作茬口)、花生单作茬口共3种茬口,以及0 kg P_2O_5·hm^(-2)(P_0)和180 kg P_2O_5·hm^(-2)(P_1) 2个磷水平下,研究了间作茬口与施磷对冬小麦分蘖、叶面积指数(LAI)、干物质积累、光合特性及产量的影响机制,为玉米花生间作与小麦-玉米复种轮作提供理论依据。结果表明:(1)间作茬口较玉米茬口显著提高了冬小麦有效分蘖数、LAI、净光合速率和干物质积累量,并提高了冬小麦旗叶的SPAD值、CO_2饱和点、光饱和点及最大净光合速率(P_(nmax))、表观量子效率(AQY)、羧化效率(CE)、最大羧化速率(V_(cmax))、最大RUBP再生的电子传递速率(J_(max))和最大磷酸丙糖利用速率(V_(TPU)),且CE、V_(cmax)、V_(TPU)的增幅均达到显著水平(P<0.05),有效改善了冬小麦产量构成,显著提高籽粒产量(P<0.05)。(2)间作茬口较花生茬口提高了冬小麦乳熟期的P_(nmax)、AQY、CE,增加了穗粒数和粒重,提高了产量。(3)与不施磷相比,施磷180 kg P_2O_5·hm^(-2)显著促进间作茬口冬小麦生长,显著提高冬小麦旗叶的SPAD值、P_(nmax)、AQY、CE、V_(cmax)、J_(max)、V_(TPU)和籽粒产量(P<0.05)。研究发现,间作茬口较玉米茬口能有效增强冬小麦旗叶表观量子效率和CO_2羧化能力,显著提高小麦花后光合能力,促进冬小麦生长,从而增加穗粒数、粒重和籽粒产量,且间作茬口结合施磷180 kg P_2O_5·hm^(-2)效果更好。