AIM: To study the effects of microcirculation disturbance(MD) on rats with acute severe pancreatitis (ASP).METHODS: We developed ASP rat models, and anatomized separately after 1, 3, 5, 7, and 9 h. We took out blood a...AIM: To study the effects of microcirculation disturbance(MD) on rats with acute severe pancreatitis (ASP).METHODS: We developed ASP rat models, and anatomized separately after 1, 3, 5, 7, and 9 h. We took out blood and did hemorrheologic examination and erythrocyte osmotic fragility test, checked up the water content, capillary permeability, and genetic expression of intercellular adhesion molecule-1 (ICAM-1) in lung tissues, examined the apoptosis degree of blood vessel endothelium while we tested related gene expression of Bax and Bcl-2in lung tissues. We did the same examination in control group.RESULTS: The viscosity of total blood and plasma, the hematocrit, and the erythrocyte osmotic fragility were all increased. Fibrinogen was decreased. The water content in lung tissues and capillary permeability were increased.Apoptosis degree of blood vessel endothelium was increased too. ICAM-1 genetic expression moved up after1 h and reached its peak value after 9 h.CONCLUSION: MD plays an important role in ASP following acute lung injury (ALI). The functional damage of blood vessel endothelium, the apoptosis of capillary vessel endothelium, WBC edging-concentration and the increasing of erythrocyte fragility are the main reasons of ALI.展开更多
Objective To determine whether the onset of acute lung injury (ALl) induces the up-regulation of pentraxin 3 (PTX3) expression in mice and whether PTX3 concentration in the biofluid can help recognizing sepsis-ind...Objective To determine whether the onset of acute lung injury (ALl) induces the up-regulation of pentraxin 3 (PTX3) expression in mice and whether PTX3 concentration in the biofluid can help recognizing sepsis-induced ALI. Methods Wild-type C57BL/6 mice (12-14 weeks old) were randomly divided into 3 groups. Mice in the group 1 (n=12) and group 2 (n=12) were instilled with lipopolysaccharide via intratracheal or intraperitoneal routes, respectively. Mice in the group 3 (n=8) were taken as blank controls. Pulmonary morphological and functional alterations were measured to determine the presence of experimental ALl. PTX3 expression in the lung was quantified at both protein and mRNA levels. PTX3 protein concentration in blood and bronchoalveolar lavage fluid was measured to evaluate its ability to diagnose sepsis-induced ALI by computing area under receiver operator characteristic curve (AUROCC). Results ALl was commonly confirmed in the group 1 but never in the other groups. PTX3 expression was up-regulated indiscriminately among lipopolysaccharide-challenged mice. PTX3 protein concentration in the biofluid was unable to diagnose sepsis-induced ALl evidenced by its small AUROCC. PTX3 concentration in bronchoalveolar lavage fluid did not correlate with that in serum. Conclusions Lipopolysaccharide challenges induced PTX3 expression in mice regardless of the presence ofALI. PTX3 may act as an indicator of inflammatory response instead of organ injury per se.展开更多
Objective: To monitor the systemic gene expression profile in a murine model of lipopolysaccharide-induced acute lung injury. Methods: Acute lung injury was induced by intratracheal injection of lipopolysaccharide in ...Objective: To monitor the systemic gene expression profile in a murine model of lipopolysaccharide-induced acute lung injury. Methods: Acute lung injury was induced by intratracheal injection of lipopolysaccharide in 3 mice. Another 3 normal mice receiving same volume of normal saline were taken as the controls. The comprehensive gene expression profile was monitored by the recently modified long serial analysis of gene expression. Results: A total of 24 670 tags representing 12 168 transcripts in the control mice and 26 378 tags representing 13 397 transcripts in the mice with lung injury were identified respectively. There were 11 transcripts increasing and 7 transcripts decreasing more than 10 folds in the lipopolysaccharide-treated mice. The most overexpressed genes in the mice with lung injury included serum amyloid A3, metallothionein 2, lipocalin 2, cyclin-dependent kinase inhibitor 1A, lactate dehydrogenase 1, melatonin receptor, S100 calcium-binding protein A9, natriuretic peptide precursor, etc. Mitogen activated protein kinase 3, serum albumin, complement component 1 inhibitor, and ATP synthase were underexpressed in the lung injury mice. Conclusions: Serial analysis of gene expression provides a molecular characteristic of acute lung injury.展开更多
基金Supported by the National Natural Science Foundation of China,No. 30371398
文摘AIM: To study the effects of microcirculation disturbance(MD) on rats with acute severe pancreatitis (ASP).METHODS: We developed ASP rat models, and anatomized separately after 1, 3, 5, 7, and 9 h. We took out blood and did hemorrheologic examination and erythrocyte osmotic fragility test, checked up the water content, capillary permeability, and genetic expression of intercellular adhesion molecule-1 (ICAM-1) in lung tissues, examined the apoptosis degree of blood vessel endothelium while we tested related gene expression of Bax and Bcl-2in lung tissues. We did the same examination in control group.RESULTS: The viscosity of total blood and plasma, the hematocrit, and the erythrocyte osmotic fragility were all increased. Fibrinogen was decreased. The water content in lung tissues and capillary permeability were increased.Apoptosis degree of blood vessel endothelium was increased too. ICAM-1 genetic expression moved up after1 h and reached its peak value after 9 h.CONCLUSION: MD plays an important role in ASP following acute lung injury (ALI). The functional damage of blood vessel endothelium, the apoptosis of capillary vessel endothelium, WBC edging-concentration and the increasing of erythrocyte fragility are the main reasons of ALI.
基金Partly supported by a grant from Jie-shou Li Academician Gut Barrier Research Fund
文摘Objective To determine whether the onset of acute lung injury (ALl) induces the up-regulation of pentraxin 3 (PTX3) expression in mice and whether PTX3 concentration in the biofluid can help recognizing sepsis-induced ALI. Methods Wild-type C57BL/6 mice (12-14 weeks old) were randomly divided into 3 groups. Mice in the group 1 (n=12) and group 2 (n=12) were instilled with lipopolysaccharide via intratracheal or intraperitoneal routes, respectively. Mice in the group 3 (n=8) were taken as blank controls. Pulmonary morphological and functional alterations were measured to determine the presence of experimental ALl. PTX3 expression in the lung was quantified at both protein and mRNA levels. PTX3 protein concentration in blood and bronchoalveolar lavage fluid was measured to evaluate its ability to diagnose sepsis-induced ALI by computing area under receiver operator characteristic curve (AUROCC). Results ALl was commonly confirmed in the group 1 but never in the other groups. PTX3 expression was up-regulated indiscriminately among lipopolysaccharide-challenged mice. PTX3 protein concentration in the biofluid was unable to diagnose sepsis-induced ALl evidenced by its small AUROCC. PTX3 concentration in bronchoalveolar lavage fluid did not correlate with that in serum. Conclusions Lipopolysaccharide challenges induced PTX3 expression in mice regardless of the presence ofALI. PTX3 may act as an indicator of inflammatory response instead of organ injury per se.
文摘Objective: To monitor the systemic gene expression profile in a murine model of lipopolysaccharide-induced acute lung injury. Methods: Acute lung injury was induced by intratracheal injection of lipopolysaccharide in 3 mice. Another 3 normal mice receiving same volume of normal saline were taken as the controls. The comprehensive gene expression profile was monitored by the recently modified long serial analysis of gene expression. Results: A total of 24 670 tags representing 12 168 transcripts in the control mice and 26 378 tags representing 13 397 transcripts in the mice with lung injury were identified respectively. There were 11 transcripts increasing and 7 transcripts decreasing more than 10 folds in the lipopolysaccharide-treated mice. The most overexpressed genes in the mice with lung injury included serum amyloid A3, metallothionein 2, lipocalin 2, cyclin-dependent kinase inhibitor 1A, lactate dehydrogenase 1, melatonin receptor, S100 calcium-binding protein A9, natriuretic peptide precursor, etc. Mitogen activated protein kinase 3, serum albumin, complement component 1 inhibitor, and ATP synthase were underexpressed in the lung injury mice. Conclusions: Serial analysis of gene expression provides a molecular characteristic of acute lung injury.