将绿色荧光蛋白基因转入西瓜尖孢镰刀菌FON中,并利用荧光共聚焦显微镜观察GFP标记菌株侵染西瓜的过程。结果显示,转化子连续转接4代能够稳定遗传,荧光强度良好,PCR验证gfp基因已转入菌株FON中;利用GFP标记菌株在荧光共聚焦显微镜下观察...将绿色荧光蛋白基因转入西瓜尖孢镰刀菌FON中,并利用荧光共聚焦显微镜观察GFP标记菌株侵染西瓜的过程。结果显示,转化子连续转接4代能够稳定遗传,荧光强度良好,PCR验证gfp基因已转入菌株FON中;利用GFP标记菌株在荧光共聚焦显微镜下观察其侵染西瓜苗的过程,发现在1/2 MS培养的西瓜苗中,FON经过48 h侵染即可进入西瓜的根维管束,第3天便进入茎维管束,第4天进入叶维管束(包括叶柄和叶脉);在土壤盆栽条件下,侵染后2 d FON进入西瓜的根维管束,第9天进入茎维管束,第11天进入叶维管束。培养基培养与土壤盆栽相比,培养基栽培FON侵染的速度更快。展开更多
对茄科作物致病尖孢镰刀菌番茄专化型(Fusarium oxysporum f. sp. lycopersici,FOL)、茄子专化型(F.oxysproum f. sp. melongenae,FOM)和辣椒专化型(F.oxysporum f. sp. capsicum,FOC)细胞壁降解酶多聚半乳糖醛酸酶(PG)、果胶甲基半乳...对茄科作物致病尖孢镰刀菌番茄专化型(Fusarium oxysporum f. sp. lycopersici,FOL)、茄子专化型(F.oxysproum f. sp. melongenae,FOM)和辣椒专化型(F.oxysporum f. sp. capsicum,FOC)细胞壁降解酶多聚半乳糖醛酸酶(PG)、果胶甲基半乳糖醛酸酶(PMG)、多聚半乳糖醛酸反式消除酶(PGTE)、果胶甲基反式消除酶(PMTE)及纤维素酶(Cx)进行比较。对3个专化型分别在寄主植物体内细胞壁降解酶活性测定表明:发病茄子和番茄体内酶活性从高到低依次为PG、PMG、PGTE、Cx 和PMTE,发病辣椒体内酶活性从高到低依次为PG、PGTE、PMG、PMTE 和Cx。体外诱导试验发现,FOC所产生的PG活性比FOM和FOL高,而FOM所产生的PGTE比FOC和FOL高,3个专化型的PMG、PMTE和Cx活性没有显著差异。通过PG同工酶薄层等电聚焦电泳分析,FOL、FOM和FOC分别产生5、5、3个PG同工酶,各有1条特异的PG同工酶条带。推测此3个专化型PG同工酶的差异可能和病原菌的致病作用和寄主专化性差异有关。展开更多
文摘将绿色荧光蛋白基因转入西瓜尖孢镰刀菌FON中,并利用荧光共聚焦显微镜观察GFP标记菌株侵染西瓜的过程。结果显示,转化子连续转接4代能够稳定遗传,荧光强度良好,PCR验证gfp基因已转入菌株FON中;利用GFP标记菌株在荧光共聚焦显微镜下观察其侵染西瓜苗的过程,发现在1/2 MS培养的西瓜苗中,FON经过48 h侵染即可进入西瓜的根维管束,第3天便进入茎维管束,第4天进入叶维管束(包括叶柄和叶脉);在土壤盆栽条件下,侵染后2 d FON进入西瓜的根维管束,第9天进入茎维管束,第11天进入叶维管束。培养基培养与土壤盆栽相比,培养基栽培FON侵染的速度更快。
文摘对茄科作物致病尖孢镰刀菌番茄专化型(Fusarium oxysporum f. sp. lycopersici,FOL)、茄子专化型(F.oxysproum f. sp. melongenae,FOM)和辣椒专化型(F.oxysporum f. sp. capsicum,FOC)细胞壁降解酶多聚半乳糖醛酸酶(PG)、果胶甲基半乳糖醛酸酶(PMG)、多聚半乳糖醛酸反式消除酶(PGTE)、果胶甲基反式消除酶(PMTE)及纤维素酶(Cx)进行比较。对3个专化型分别在寄主植物体内细胞壁降解酶活性测定表明:发病茄子和番茄体内酶活性从高到低依次为PG、PMG、PGTE、Cx 和PMTE,发病辣椒体内酶活性从高到低依次为PG、PGTE、PMG、PMTE 和Cx。体外诱导试验发现,FOC所产生的PG活性比FOM和FOL高,而FOM所产生的PGTE比FOC和FOL高,3个专化型的PMG、PMTE和Cx活性没有显著差异。通过PG同工酶薄层等电聚焦电泳分析,FOL、FOM和FOC分别产生5、5、3个PG同工酶,各有1条特异的PG同工酶条带。推测此3个专化型PG同工酶的差异可能和病原菌的致病作用和寄主专化性差异有关。