期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于时间序列和机器学习预测尘肺病发展趋势研究 被引量:1
1
作者 李申龙 王振平 +4 位作者 卢国群 徐修立 李宗山 初昊 肖旸 《中国煤炭》 2023年第10期68-73,共6页
为研究尘肺病的未来发展趋势,减少尘肺病的患病几率,基于时间序列预测法和机器学习算法建立尘肺病预测模型。结果表明:经时间序列预测法建立的预测模型得出煤炭年产量和煤矿从业人员数呈持续上升趋势;以煤矿从业人员数、煤炭年产量以及... 为研究尘肺病的未来发展趋势,减少尘肺病的患病几率,基于时间序列预测法和机器学习算法建立尘肺病预测模型。结果表明:经时间序列预测法建立的预测模型得出煤炭年产量和煤矿从业人员数呈持续上升趋势;以煤矿从业人员数、煤炭年产量以及年份作为输入变量,尘肺病病例人数作为输出变量建立的BP神经网络模型具有良好的预测效果,体现了该预测方法的可行性;经遗传算法优化后的BP神经网络相较之BP神经网络而言,其评价指标更优、预测精度更高;对比2种预测模型最终的预测结果,遗传算法优化后的BP神经网络(GA BPNN)预测结果更加稳定,与预期的预测值更加接近。 展开更多
关键词 尘肺 时间序列预测法 GA BPNN 煤炭产量 煤矿从业人数 尘肺病病例人数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部