We study non-topological, charged planar walls (Q-walls) in the context of a particle physics model with supersymmetry broken by low-energy gauge mediation. Analytical properties are derived within the fiat-potentia...We study non-topological, charged planar walls (Q-walls) in the context of a particle physics model with supersymmetry broken by low-energy gauge mediation. Analytical properties are derived within the fiat-potential approximation for the flat-direction raising potential, while a numerical study is performed using the fall two-loop supersymmetric potential. We analyze the energetics of finite-size Q-walls and compare them to Q-balls, non-topological solitons possessing spherical symmetry and arising in the same supersymmetric model. This allows us to draw a phase diagram in the charge-transverse length plane, which shows a region where Q-wall solutions are energetically favored over Q-balls. However, due to their finiteness, such finite-size Q-walls are dynamically unstable and decay into Q-balls in a time which is less than their typical scale-length.展开更多
We study the self-gravitating stars with a linear equation of state, P = aρ, in AdS space, where a is a constant parameter. There exists a critical dimension, beyond which the stars are always stable with any central...We study the self-gravitating stars with a linear equation of state, P = aρ, in AdS space, where a is a constant parameter. There exists a critical dimension, beyond which the stars are always stable with any central energy density; below which there exists a maximal mass configuration for a certain central energy density and when the central energy density continues to increase, the configuration becomes unstable. We find that the critical dimension depends on the parameter a, it runs from d = 11.1429 to 10.1291 as a varies from a = 0 to 1. The lowest integer dimension for a dynamically stable self-gravitating configuration should be d = 12 for any a E [0, 1] rather than d = 11, the latter is the case of self-gravitating radiation configurations in AdS space.展开更多
文摘We study non-topological, charged planar walls (Q-walls) in the context of a particle physics model with supersymmetry broken by low-energy gauge mediation. Analytical properties are derived within the fiat-potential approximation for the flat-direction raising potential, while a numerical study is performed using the fall two-loop supersymmetric potential. We analyze the energetics of finite-size Q-walls and compare them to Q-balls, non-topological solitons possessing spherical symmetry and arising in the same supersymmetric model. This allows us to draw a phase diagram in the charge-transverse length plane, which shows a region where Q-wall solutions are energetically favored over Q-balls. However, due to their finiteness, such finite-size Q-walls are dynamically unstable and decay into Q-balls in a time which is less than their typical scale-length.
基金Supported partially by National Natural Science Foundation of China under Grant Nos.10821504 and 10525060Chinese Academy of Sciences under Grant No.KJCX3-SYW-N2
文摘We study the self-gravitating stars with a linear equation of state, P = aρ, in AdS space, where a is a constant parameter. There exists a critical dimension, beyond which the stars are always stable with any central energy density; below which there exists a maximal mass configuration for a certain central energy density and when the central energy density continues to increase, the configuration becomes unstable. We find that the critical dimension depends on the parameter a, it runs from d = 11.1429 to 10.1291 as a varies from a = 0 to 1. The lowest integer dimension for a dynamically stable self-gravitating configuration should be d = 12 for any a E [0, 1] rather than d = 11, the latter is the case of self-gravitating radiation configurations in AdS space.