A single-axis normal-tracking measurement system is proposed, which can solve the problem of measuring large curved surface. According to Collins formula, the tilt dependent error of the measurement system is studied,...A single-axis normal-tracking measurement system is proposed, which can solve the problem of measuring large curved surface. According to Collins formula, the tilt dependent error of the measurement system is studied, which uses Gaussian beam as the light source. By theoretical analysis and numerical simulation, the influence of the error is presented. The results show that there is the difference between point source and Gaussian beam for differential confocal microscopy. The opti-mal diameter of pinhole can be determined by the mathematical model and the actual parameters of the measurement system. The optimal pinhole diameter of this measurement system is 20 to 35 pm for 633 nm wavelength light source.展开更多
Wind microturbines typically have rotor diameters of 2 m or less. This paper presents theoretical expressions that can be used to determine the aerodynamic performance of wind microturbines. A commercially-available t...Wind microturbines typically have rotor diameters of 2 m or less. This paper presents theoretical expressions that can be used to determine the aerodynamic performance of wind microturbines. A commercially-available three-bladed microturbine was tested at the outlet plane of a wind tunnel. The cross-section dimensions of the wind tunnel jet are 2.5 m (horizontal) x 1.5 m (vertical). The tested microturbine has a diameter of 1.2 m, and it generates a maximum power output of about 300 W. The paper provides the wind tunnel test methodology that was used to determine the mean and fluctuating forces generated by the aforementioned wind microturbine. Both the static and dynamic responses of the turbine were measured, and results from this testing are presented in this paper. These results enable the trends and predictions of the theoretical expressions to be compared with wind tunnel measurements. It is shown that, for this particular microturbine, the behaviours of these test measurements are consistent with the expected theoretical predictions.展开更多
During the last decade, a great deal of activity has been devoted to the calculation of the HilbertPoincar′e series of unitary highest weight representations and related modules in algebraic geometry. However,uniform...During the last decade, a great deal of activity has been devoted to the calculation of the HilbertPoincar′e series of unitary highest weight representations and related modules in algebraic geometry. However,uniform formulas remain elusive—even for more basic invariants such as the Gelfand-Kirillov dimension or the Bernstein degree, and are usually limited to families of representations in a dual pair setting. We use earlier work by Joseph to provide an elementary and intrinsic proof of a uniform formula for the Gelfand-Kirillov dimension of an arbitrary unitary highest weight module in terms of its highest weight. The formula generalizes a result of Enright and Willenbring(in the dual pair setting) and is inspired by Wang's formula for the dimension of a minimal nilpotent orbit.展开更多
基金Quantity Dissemination and Quality Safety Project of AQSIQ(No.ALC1501)National Key Scientific Instrument and Equipment Development Projects,China(No.2013YQ170539)
文摘A single-axis normal-tracking measurement system is proposed, which can solve the problem of measuring large curved surface. According to Collins formula, the tilt dependent error of the measurement system is studied, which uses Gaussian beam as the light source. By theoretical analysis and numerical simulation, the influence of the error is presented. The results show that there is the difference between point source and Gaussian beam for differential confocal microscopy. The opti-mal diameter of pinhole can be determined by the mathematical model and the actual parameters of the measurement system. The optimal pinhole diameter of this measurement system is 20 to 35 pm for 633 nm wavelength light source.
文摘Wind microturbines typically have rotor diameters of 2 m or less. This paper presents theoretical expressions that can be used to determine the aerodynamic performance of wind microturbines. A commercially-available three-bladed microturbine was tested at the outlet plane of a wind tunnel. The cross-section dimensions of the wind tunnel jet are 2.5 m (horizontal) x 1.5 m (vertical). The tested microturbine has a diameter of 1.2 m, and it generates a maximum power output of about 300 W. The paper provides the wind tunnel test methodology that was used to determine the mean and fluctuating forces generated by the aforementioned wind microturbine. Both the static and dynamic responses of the turbine were measured, and results from this testing are presented in this paper. These results enable the trends and predictions of the theoretical expressions to be compared with wind tunnel measurements. It is shown that, for this particular microturbine, the behaviours of these test measurements are consistent with the expected theoretical predictions.
基金supported by National Natural Science Foundation of China(Grant No.11171324)the Hong Kong Research Grants Council under RGC Project(Grant No.60311)the Hong Kong University of Science and Technology under DAG S09/10.SC02.
文摘During the last decade, a great deal of activity has been devoted to the calculation of the HilbertPoincar′e series of unitary highest weight representations and related modules in algebraic geometry. However,uniform formulas remain elusive—even for more basic invariants such as the Gelfand-Kirillov dimension or the Bernstein degree, and are usually limited to families of representations in a dual pair setting. We use earlier work by Joseph to provide an elementary and intrinsic proof of a uniform formula for the Gelfand-Kirillov dimension of an arbitrary unitary highest weight module in terms of its highest weight. The formula generalizes a result of Enright and Willenbring(in the dual pair setting) and is inspired by Wang's formula for the dimension of a minimal nilpotent orbit.