A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,tr...A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,transition portion and internal portion.The grains in free surface portion were considered the single grains,and the anisotropy of the grains was taken into account by introducing grain orientation to explain the inhomogeneous deformation.In the transition portion,the effects of the neighbouring grains were adopted in the model.The grains in the internal portion were considered the polycrystalline material.With the developed model,the upsetting deformation process was simulated by the MSC Superform software.The scatter of the flow stress and inhomogeneous deformation was observed by analysis of the model.The comparisons show that the computational results are good agreed with the experimental results.This means that the presented model is effective.展开更多
Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect a...Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect and indentation size effect were explored.The indentation hardness was fitted using the Nix-Gao model by considering the scaling factor.The results show that the scaling factor is barely correlated with the grain/sub-grain size.The interaction between the plastically deformed zone(PDZ) boundary and the grain/sub-grain boundary is believed to be the reason that leads to an increase of the measured hardness at the specific depths.Results also indicate that the area of the PDZ is barely correlated with the grain/sub-grain size,and the indentation hardness starts to stabilize once the PDZ expands to the dimension of an individual grain/sub-grain.展开更多
Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing sc...Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing scatter of forming force and more irregular surface topography occurred with the increase of grain size. A modified surface model based on dislocations pile-up in surface layer grains, and a flow stress scattering formulation based on standard deviation and grain size distribution were proposed to analyze size effects on forming force in micro compression. The inhomogeneous deformation of surface layer grains was discussed by the main deformation manner of rotation. A good agreement with the experimental results was achieved.展开更多
The warm-hot deformation behavior of 20CrMnTi steel was studied with hot compression tests at temperature range of 1123-1273 K and strain rate of 0.1-20 s^-1. The activation energy for warm-hot deformation is 426.064 ...The warm-hot deformation behavior of 20CrMnTi steel was studied with hot compression tests at temperature range of 1123-1273 K and strain rate of 0.1-20 s^-1. The activation energy for warm-hot deformation is 426.064 KJ/mol. The influences of Zener-Hollomon parameter, strain and grain size imposing on the flow stress were analyzed in the temperature range of warm-hot forging. Creep theory and mathematical theory of statistics were used to obtain mathematical models of flow stress. The research and results provide scientific basis for controlling microstructure of forging process through Zener-Hollomon parameter.展开更多
In order to clarify the influence of grain size on cyclic deformation response of superalloy sheets and springback behavior,cyclic loading-unloading and shearing tests were performed on the superalloy foils with 0.2 m...In order to clarify the influence of grain size on cyclic deformation response of superalloy sheets and springback behavior,cyclic loading-unloading and shearing tests were performed on the superalloy foils with 0.2 mm in thickness and diverse grain sizes.The results show that,the decline ratio of elastic modulus is weakened with increasing grain size,and the Bauschinger effect becomes evident with decreasing grain size.Meanwhile,U-bending test results determine that the springback is diminished with increasing grain size.The Chaboche,Anisotropic Nonlinear Kinematic(ANK)and Yoshida-Uemori(Y-U)models were utilized to fit the shear stress-strain curves of specimens.It is found that Y-U model is sufficient of predicting the springback.However,the prediction accuracy is degraded with increasing grain size.展开更多
A constitutive equation was proposed to describe the effect of grain size on the deformation behavior.And a coupling simulation of deformation with heat transfer and microstructure was carried out in isothermal upsett...A constitutive equation was proposed to describe the effect of grain size on the deformation behavior.And a coupling simulation of deformation with heat transfer and microstructure was carried out in isothermal upsetting process of Ti60 alloy.The effects of processing parameters on the equivalent strain,the equivalent stress,the temperature rise and the grain size distribution in isothermal upsetting process of Ti60 alloy were analyzed.It is concluded that the uniformity of equivalent strain and equivalent stress increases with the increase of deformation temperature.However,the temperature rise and the grain size decreases with the increase of deformation temperature.The non-uniformity of equivalent strain,equivalent stress,temperature field and grain size increases with the increase of height reduction.And the calculated grain size using simulation is in good agreement with the experimental one.展开更多
A new phenomenological and empirically-based constitutive model was proposed to modify the term in the original Johnson−Cook constitutive model.The new model can be used to describe and predict the flow stress of AA10...A new phenomenological and empirically-based constitutive model was proposed to modify the term in the original Johnson−Cook constitutive model.The new model can be used to describe and predict the flow stress of AA1070 aluminum with different initial grain sizes in the hot working process.This developed model considers thermal softening,strain-rate hardening,strain hardening,initial grain size,and interactions with each other and can correctly model the behavior of AA1070 at elevated temperature with different strains,strain rates,and initial grain sizes.The hot flow behavior of AA1070 was investigated through compression tests over wide ranges of temperature from 623 to 773 K,strain rate from 0.005 to 0.5 s−1 and initial grain size from 50 to 450μm.Results show that the initial grain size has a significant effect on the flow behavior of AA1070.Then,correlation coefficient(R),average absolute relative error(AARE),and relative error were examined for comparative predictability of the model.Results show that flow stresses for different initial grain sizes calculated by the new proposed model perfectly correlate with experimental ones,with a mean relative error of 1.19%,which confirms that the new modified Johnson−Cook relation can give a precise estimation of the hot flow stress of AA1070 aluminum by considering the initial grain size.展开更多
基金Projects(50835002,50805035)support by the National Natural Science Foundation of ChinaProject(QC08C55)supported by the Natural Science Foundation of Heilongjiang Province,ChinaProject(200802131031)supported by the PhD Programs Foundation of Ministry of Education of China for Young Scholars
文摘A new polycrystal model was presented from the viewpoint of polycrystal structure of the billets considering free surface effects.In the model,the billet was divided into three portions,such as free surface portion,transition portion and internal portion.The grains in free surface portion were considered the single grains,and the anisotropy of the grains was taken into account by introducing grain orientation to explain the inhomogeneous deformation.In the transition portion,the effects of the neighbouring grains were adopted in the model.The grains in the internal portion were considered the polycrystalline material.With the developed model,the upsetting deformation process was simulated by the MSC Superform software.The scatter of the flow stress and inhomogeneous deformation was observed by analysis of the model.The comparisons show that the computational results are good agreed with the experimental results.This means that the presented model is effective.
基金Project(51174235)supported by the National Natural Science Foundation of China
文摘Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect and indentation size effect were explored.The indentation hardness was fitted using the Nix-Gao model by considering the scaling factor.The results show that the scaling factor is barely correlated with the grain/sub-grain size.The interaction between the plastically deformed zone(PDZ) boundary and the grain/sub-grain boundary is believed to be the reason that leads to an increase of the measured hardness at the specific depths.Results also indicate that the area of the PDZ is barely correlated with the grain/sub-grain size,and the indentation hardness starts to stabilize once the PDZ expands to the dimension of an individual grain/sub-grain.
基金Project(51375113)supported by the National Natural Science Foundation of China
文摘Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing scatter of forming force and more irregular surface topography occurred with the increase of grain size. A modified surface model based on dislocations pile-up in surface layer grains, and a flow stress scattering formulation based on standard deviation and grain size distribution were proposed to analyze size effects on forming force in micro compression. The inhomogeneous deformation of surface layer grains was discussed by the main deformation manner of rotation. A good agreement with the experimental results was achieved.
基金Project supported by the Shanghai Automotive Industry Science andTechnology Development Fund, China
文摘The warm-hot deformation behavior of 20CrMnTi steel was studied with hot compression tests at temperature range of 1123-1273 K and strain rate of 0.1-20 s^-1. The activation energy for warm-hot deformation is 426.064 KJ/mol. The influences of Zener-Hollomon parameter, strain and grain size imposing on the flow stress were analyzed in the temperature range of warm-hot forging. Creep theory and mathematical theory of statistics were used to obtain mathematical models of flow stress. The research and results provide scientific basis for controlling microstructure of forging process through Zener-Hollomon parameter.
基金the National Natural Science Foundation of China(Nos.51975031,52075023,51635005)Defense Industrial Technology Development Program,China(No.JCKY2018601C207)。
文摘In order to clarify the influence of grain size on cyclic deformation response of superalloy sheets and springback behavior,cyclic loading-unloading and shearing tests were performed on the superalloy foils with 0.2 mm in thickness and diverse grain sizes.The results show that,the decline ratio of elastic modulus is weakened with increasing grain size,and the Bauschinger effect becomes evident with decreasing grain size.Meanwhile,U-bending test results determine that the springback is diminished with increasing grain size.The Chaboche,Anisotropic Nonlinear Kinematic(ANK)and Yoshida-Uemori(Y-U)models were utilized to fit the shear stress-strain curves of specimens.It is found that Y-U model is sufficient of predicting the springback.However,the prediction accuracy is degraded with increasing grain size.
基金Project(KP200905) supports by the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘A constitutive equation was proposed to describe the effect of grain size on the deformation behavior.And a coupling simulation of deformation with heat transfer and microstructure was carried out in isothermal upsetting process of Ti60 alloy.The effects of processing parameters on the equivalent strain,the equivalent stress,the temperature rise and the grain size distribution in isothermal upsetting process of Ti60 alloy were analyzed.It is concluded that the uniformity of equivalent strain and equivalent stress increases with the increase of deformation temperature.However,the temperature rise and the grain size decreases with the increase of deformation temperature.The non-uniformity of equivalent strain,equivalent stress,temperature field and grain size increases with the increase of height reduction.And the calculated grain size using simulation is in good agreement with the experimental one.
文摘A new phenomenological and empirically-based constitutive model was proposed to modify the term in the original Johnson−Cook constitutive model.The new model can be used to describe and predict the flow stress of AA1070 aluminum with different initial grain sizes in the hot working process.This developed model considers thermal softening,strain-rate hardening,strain hardening,initial grain size,and interactions with each other and can correctly model the behavior of AA1070 at elevated temperature with different strains,strain rates,and initial grain sizes.The hot flow behavior of AA1070 was investigated through compression tests over wide ranges of temperature from 623 to 773 K,strain rate from 0.005 to 0.5 s−1 and initial grain size from 50 to 450μm.Results show that the initial grain size has a significant effect on the flow behavior of AA1070.Then,correlation coefficient(R),average absolute relative error(AARE),and relative error were examined for comparative predictability of the model.Results show that flow stresses for different initial grain sizes calculated by the new proposed model perfectly correlate with experimental ones,with a mean relative error of 1.19%,which confirms that the new modified Johnson−Cook relation can give a precise estimation of the hot flow stress of AA1070 aluminum by considering the initial grain size.