Additive manufacturing technologies enable the production of parts by successively adding layers. In powder-based technologies, each powder layer is selectively solidified following the respective cross-section of the...Additive manufacturing technologies enable the production of parts by successively adding layers. In powder-based technologies, each powder layer is selectively solidified following the respective cross-section of the parts either by the application of high-energy radiation or by the selective deposition of binder. By repeating the steps of layer deposition and selective solidification, parts are fabricated. The layer-wise build-up and the ambient conditions lead to warpage of the parts due to the temporarily and locally uneven distribution of shrinkage throughout the part. This leads to deviations in shape and dimension. The development of these technologies fosters a change fi'om prototyping to manufacturing applications, As a consequence, higher standards regarding the shape and dimensional accuracy are required. Therefore, new strategies to minimize the resulting deformations are necessary to reduce rejects and widen the range of applications of the described technologies. In this paper, an empirical, a knowledge-based and a simulative approach for warpage compensation are introduced. They are all based on the pre-deformation of the digital 3D part geometry inverse to the expected deformation during manufacturing. The aim of the research is the development of a comprehensive method that enables users to improve their part-quality by supporting the pre-deformation process. Contrary to existing work, this method should not be process-specific but cover a wide range of additive manufacturing techniques. Typical forms of deformation of the processes laser sintering, laser beam melting and 3D printing (powder-binder) are presented and compensation strategies are disenssed. Finally, an outlook on the ongoing research is given.展开更多
The surface quality of the substrate is a crucial factor in building "clean" quantum-dimensional systems. There are a number of micro-nano metric methods for the analysis state of surface: the atomic force microsco...The surface quality of the substrate is a crucial factor in building "clean" quantum-dimensional systems. There are a number of micro-nano metric methods for the analysis state of surface: the atomic force microscopy, the scanning tunneling microscopy and others. The SE (surface electron) over substrate has a "soft" hydrogen-like spectrum in the normal direction and the SEs mobility along is sensitive to the inhomogeneities of the substrate and this is analyzed in work. The values of electron mobility and energy of thermal activation are basic parameters of transport process which essentially depend on the helium film thickness. For analysis of nano-size inhomogeneities of substrate here we apply a new method providing a uniformity of the film thickness on substrate and fixing of measuring cell with supply wires. The plunger with electro-mechanic driver into a hermetic chamber is used for variation the helium level and consequently the film thickness. Considering values the conductivity and the variation of potential along surface is estimated the effective size of roughness from several nanometers (for non-saturated helium film) to 10^2 nm (for saturated film).展开更多
文摘Additive manufacturing technologies enable the production of parts by successively adding layers. In powder-based technologies, each powder layer is selectively solidified following the respective cross-section of the parts either by the application of high-energy radiation or by the selective deposition of binder. By repeating the steps of layer deposition and selective solidification, parts are fabricated. The layer-wise build-up and the ambient conditions lead to warpage of the parts due to the temporarily and locally uneven distribution of shrinkage throughout the part. This leads to deviations in shape and dimension. The development of these technologies fosters a change fi'om prototyping to manufacturing applications, As a consequence, higher standards regarding the shape and dimensional accuracy are required. Therefore, new strategies to minimize the resulting deformations are necessary to reduce rejects and widen the range of applications of the described technologies. In this paper, an empirical, a knowledge-based and a simulative approach for warpage compensation are introduced. They are all based on the pre-deformation of the digital 3D part geometry inverse to the expected deformation during manufacturing. The aim of the research is the development of a comprehensive method that enables users to improve their part-quality by supporting the pre-deformation process. Contrary to existing work, this method should not be process-specific but cover a wide range of additive manufacturing techniques. Typical forms of deformation of the processes laser sintering, laser beam melting and 3D printing (powder-binder) are presented and compensation strategies are disenssed. Finally, an outlook on the ongoing research is given.
文摘The surface quality of the substrate is a crucial factor in building "clean" quantum-dimensional systems. There are a number of micro-nano metric methods for the analysis state of surface: the atomic force microscopy, the scanning tunneling microscopy and others. The SE (surface electron) over substrate has a "soft" hydrogen-like spectrum in the normal direction and the SEs mobility along is sensitive to the inhomogeneities of the substrate and this is analyzed in work. The values of electron mobility and energy of thermal activation are basic parameters of transport process which essentially depend on the helium film thickness. For analysis of nano-size inhomogeneities of substrate here we apply a new method providing a uniformity of the film thickness on substrate and fixing of measuring cell with supply wires. The plunger with electro-mechanic driver into a hermetic chamber is used for variation the helium level and consequently the film thickness. Considering values the conductivity and the variation of potential along surface is estimated the effective size of roughness from several nanometers (for non-saturated helium film) to 10^2 nm (for saturated film).