期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
利用词袋模型估计尺度差异的异源影像匹配方法 被引量:1
1
作者 喻鹏飞 李浩 +2 位作者 何秀凤 洪振华 刘宇宸 《计算机与现代化》 2023年第4期56-61,72,共7页
针对影像匹配中因影像间尺度差异过大导致同名特征点数目不足甚至误匹配的问题,提出一种利用词袋模型估计尺度差异的异源影像SIFT匹配方法(BS-SIFT)。该方法通过提前感知待匹配影像间存在的尺度差异,将异源影像匹配转化为在同一尺度上开... 针对影像匹配中因影像间尺度差异过大导致同名特征点数目不足甚至误匹配的问题,提出一种利用词袋模型估计尺度差异的异源影像SIFT匹配方法(BS-SIFT)。该方法通过提前感知待匹配影像间存在的尺度差异,将异源影像匹配转化为在同一尺度上开始,提高匹配的内点率,进而增加大尺度差异影像的匹配点数量。首先,通过将连续变化的不同尺度影像特征点在特征空间聚类,并将各尺度影像特征重分配到特征中心,得到各尺度下的特征分布关系;然后,结合影像特征中心的空间信息熵定权,得到待匹配影像间尺度描述符;最后,分析尺度描述符距离分布可得到最佳影像尺度差。实验结果表明,本文提出的BS-SIFT算法在超过10倍尺度差的影像匹配上仍能取得较好结果,相较于经典的SIFT算法,本文算法在取得较高效率的同时可得到更多的同名特征点,匹配正确率至少提升9个百分点,最大可达37个百分点。 展开更多
关键词 影像匹配 尺度不变换特征 词袋模型 尺度差异 特征描述 航空航天影像
下载PDF
Fast uniform content-based satellite image registration using the scale-invariant feature transform descriptor 被引量:3
2
作者 Hamed BOZORGI Ali JAFARI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第8期1108-1116,共9页
Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which ... Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which suffer from illumination, rotation, and source differences. The scale-invariant feature transform (SIFT) algorithm has been used successfully in satellite image registration problems. Also, many researchers have applied a local SIFT descriptor to improve the image retrieval process. Despite its robustness, this algorithm has some difficulties with the quality and quantity of the extracted local feature points in multisource remote sensing. Furthermore, high dimensionality of the local features extracted by SIFT results in time-consuming computational processes alongside high storage requirements for saving the relevant information, which are important factors in content-based image retrieval (CBIR) applications. In this paper, a novel method is introduced to transform the local SIFT features to global features for multisource remote sensing. The quality and quantity of SIFT local features have been enhanced by applying contrast equalization on images in a pre-processing stage. Considering the local features of each image in the reference database as a separate class, linear discriminant analysis (LDA) is used to transform the local features to global features while reducing di- mensionality of the feature space. This will also significantly reduce the computational time and storage required. Applying the trained kernel on verification data and mapping them showed a successful retrieval rate of 91.67% for test feature points. 展开更多
关键词 Content-based image retrieval Feature point distribution Image registration Linear discriminant analysis REMOTESENSING Scale-invariant feature transform
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部