The extended Huygens-Fresnel principle and Goodman model was utilized for target surface to derive the mutual coherence function(MCF) of a Gaussian beam reflected from an arbitrary rough target in atmospheric turbulen...The extended Huygens-Fresnel principle and Goodman model was utilized for target surface to derive the mutual coherence function(MCF) of a Gaussian beam reflected from an arbitrary rough target in atmospheric turbulence. According to the MCF, expressions of the mean irradiance and average speckle size at the receiver were obtained. The analysis indicated that the mean intensity is closely related to the ratio of root mean square(rms) height to the lateral correlation length. In addition, the speckle size at the receiver is associated with turbulence strength, propagation distance and roughness of the target. The results can be reduced to the result of a Gaussian beam illuminating rough target and scattering from a target in free space.展开更多
Covalent functionalization of graphene offers opportunities for tailoring its properties and is an unavoidable consequence of some graphene synthesis techniques. However, the changes induced by the functionalization a...Covalent functionalization of graphene offers opportunities for tailoring its properties and is an unavoidable consequence of some graphene synthesis techniques. However, the changes induced by the functionalization are not well understood. By using atomic sources to control the extent of the oxygen and nitrogen functionalization, we studied the evolution in the structure and properties at the atomic scale. Atomic oxygen reversibly introduces epoxide groups whilst, under similar conditions, atomic nitrogen irreversibly creates diverse functionalities including substitutional, pyridinic, and pyrrolic nitrogen. Atomic oxygen leaves the Fermi energy at the Dirac point (i.e., undoped), whilst atomic nitrogen results in a net n-doping; however, the experimental results are consistent with the dominant electronic effect for both being a transition from delocalized to localized states, and hence the loss of the signature electronic structure of graphene.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61172031,61271110 and 61102018)the New Scientific and Technological Star of Shaanxi Province Funded Project(Grant No.2011KJXX39)the Natural Science Foundation of Shaanxi Province education office,China(Grant No.12Jk0955)
文摘The extended Huygens-Fresnel principle and Goodman model was utilized for target surface to derive the mutual coherence function(MCF) of a Gaussian beam reflected from an arbitrary rough target in atmospheric turbulence. According to the MCF, expressions of the mean irradiance and average speckle size at the receiver were obtained. The analysis indicated that the mean intensity is closely related to the ratio of root mean square(rms) height to the lateral correlation length. In addition, the speckle size at the receiver is associated with turbulence strength, propagation distance and roughness of the target. The results can be reduced to the result of a Gaussian beam illuminating rough target and scattering from a target in free space.
文摘Covalent functionalization of graphene offers opportunities for tailoring its properties and is an unavoidable consequence of some graphene synthesis techniques. However, the changes induced by the functionalization are not well understood. By using atomic sources to control the extent of the oxygen and nitrogen functionalization, we studied the evolution in the structure and properties at the atomic scale. Atomic oxygen reversibly introduces epoxide groups whilst, under similar conditions, atomic nitrogen irreversibly creates diverse functionalities including substitutional, pyridinic, and pyrrolic nitrogen. Atomic oxygen leaves the Fermi energy at the Dirac point (i.e., undoped), whilst atomic nitrogen results in a net n-doping; however, the experimental results are consistent with the dominant electronic effect for both being a transition from delocalized to localized states, and hence the loss of the signature electronic structure of graphene.