目的脑电信号的生理分析对于评估大脑功能的活跃程度、生理状态具有重要意义,脑电图(electroencephalography,EEG)是临床检查脑部疾病的一种手段,而影响脑电图结果的因素很多,其中年龄是不容忽视的因素之一。本论文提出多尺度符号序列熵...目的脑电信号的生理分析对于评估大脑功能的活跃程度、生理状态具有重要意义,脑电图(electroencephalography,EEG)是临床检查脑部疾病的一种手段,而影响脑电图结果的因素很多,其中年龄是不容忽视的因素之一。本论文提出多尺度符号序列熵(multiscale sign series entropy,MSSE)用于分析不同年龄阶段的β波脑电信号,采用符号化的方法来处理时间序列可以去除一些细节的信息而保留感兴趣的部分。方法首先依次对4组中年和少年的β波脑电数据从数据长度N、字长m和噪声等多个角度对其符号序列熵(sign series entropy,SSE)进行分析,验证了SSE能够正确区分中年和少年的β波脑电信号。接着基于SSE算法在多个尺度下对含噪声和去噪声的中年和少年的β波脑电信号进行分析。结果随着尺度的增加,含噪声与去噪声β波脑电信号SSE的值也同步升高,并且少年的SSE均高于中年的SSE。结论脑电信号的多尺度符号熵分析方法可以有效区分少年和中年β波脑电信号,并且在信号噪声的影响下也可对不同年龄段的β波脑电信号进行检测。展开更多
针对多尺度时间序列各尺度发展趋势及整体预测问题,建立小波分解回声状态网络预测模型(wavelet decomposi-tion and echo state networks,WDESN),根据各尺度的不同性质选取与之相匹配的回声状态网络模型(echo state networks,ESN),同时...针对多尺度时间序列各尺度发展趋势及整体预测问题,建立小波分解回声状态网络预测模型(wavelet decomposi-tion and echo state networks,WDESN),根据各尺度的不同性质选取与之相匹配的回声状态网络模型(echo state networks,ESN),同时,通过在各尺度条件下引入权值系数实现预测分量最优整合,提高整体预测精度。预测带噪多尺度正弦序列实验表明:WDESN模型与ESN、支持向量机及BP神经网络模型相比预测精度较高。目前,该模型已成功用于移动通信话务量的预测,并满足了现实系统的精度要求。展开更多
文摘目的脑电信号的生理分析对于评估大脑功能的活跃程度、生理状态具有重要意义,脑电图(electroencephalography,EEG)是临床检查脑部疾病的一种手段,而影响脑电图结果的因素很多,其中年龄是不容忽视的因素之一。本论文提出多尺度符号序列熵(multiscale sign series entropy,MSSE)用于分析不同年龄阶段的β波脑电信号,采用符号化的方法来处理时间序列可以去除一些细节的信息而保留感兴趣的部分。方法首先依次对4组中年和少年的β波脑电数据从数据长度N、字长m和噪声等多个角度对其符号序列熵(sign series entropy,SSE)进行分析,验证了SSE能够正确区分中年和少年的β波脑电信号。接着基于SSE算法在多个尺度下对含噪声和去噪声的中年和少年的β波脑电信号进行分析。结果随着尺度的增加,含噪声与去噪声β波脑电信号SSE的值也同步升高,并且少年的SSE均高于中年的SSE。结论脑电信号的多尺度符号熵分析方法可以有效区分少年和中年β波脑电信号,并且在信号噪声的影响下也可对不同年龄段的β波脑电信号进行检测。
文摘针对多尺度时间序列各尺度发展趋势及整体预测问题,建立小波分解回声状态网络预测模型(wavelet decomposi-tion and echo state networks,WDESN),根据各尺度的不同性质选取与之相匹配的回声状态网络模型(echo state networks,ESN),同时,通过在各尺度条件下引入权值系数实现预测分量最优整合,提高整体预测精度。预测带噪多尺度正弦序列实验表明:WDESN模型与ESN、支持向量机及BP神经网络模型相比预测精度较高。目前,该模型已成功用于移动通信话务量的预测,并满足了现实系统的精度要求。