细胞图像的自动分割是目前非常困难且具有挑战性的问题.在U-Net网络的基础上,增加了多尺度跳跃连接,引入了通道注意力模块,提出一种改进的网络模型MSE-UNet(multiscale skip connection-squeeze and excitation-UNet).多尺度跳跃连接将...细胞图像的自动分割是目前非常困难且具有挑战性的问题.在U-Net网络的基础上,增加了多尺度跳跃连接,引入了通道注意力模块,提出一种改进的网络模型MSE-UNet(multiscale skip connection-squeeze and excitation-UNet).多尺度跳跃连接将不同层次的信息巧妙地结合在一起且避免了冗余,能更加精确地分割出目标,有效地解决了细胞边界不明确的问题.通道注意力模块学习各个通道的重要性,从而使重要的特征通道占据更大的比重,在最终呈现的输出图像中展现出分割网络重点关注的部分,有效解决背景杂乱的问题.在两个公开数据集和一个自建数据集上进行测试,实验结果显示,与最近几年提出的细胞分割模型相比,该模型具有更好的性能.展开更多
文摘细胞图像的自动分割是目前非常困难且具有挑战性的问题.在U-Net网络的基础上,增加了多尺度跳跃连接,引入了通道注意力模块,提出一种改进的网络模型MSE-UNet(multiscale skip connection-squeeze and excitation-UNet).多尺度跳跃连接将不同层次的信息巧妙地结合在一起且避免了冗余,能更加精确地分割出目标,有效地解决了细胞边界不明确的问题.通道注意力模块学习各个通道的重要性,从而使重要的特征通道占据更大的比重,在最终呈现的输出图像中展现出分割网络重点关注的部分,有效解决背景杂乱的问题.在两个公开数据集和一个自建数据集上进行测试,实验结果显示,与最近几年提出的细胞分割模型相比,该模型具有更好的性能.