In this study, the project of constructed wetland for treatment of tailwater from the wastewater treatment plant in Wudang Mountain was taken as an example, and the technological processes, pollution load, wetland bed...In this study, the project of constructed wetland for treatment of tailwater from the wastewater treatment plant in Wudang Mountain was taken as an example, and the technological processes, pollution load, wetland bed structure, bed filler, selection of plants and hydraulic conditions of the subsurface flow constructed wetland were discussed. A subsurface flow constructed wetland, which covered an area of 7 227 m^2 was finally designed. It could treat 7 000 m^3 of tailwater from the wastewater treatment plant a day. In addition, the system could reduce the emission of COD, BODs, TN, TP and NH3-N by 25.55, 25.55, 12.78, 1.28 and 17.89 t respectively a day. The outlet water was proved to reach the Standard A of the first class in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002).展开更多
文摘In this study, the project of constructed wetland for treatment of tailwater from the wastewater treatment plant in Wudang Mountain was taken as an example, and the technological processes, pollution load, wetland bed structure, bed filler, selection of plants and hydraulic conditions of the subsurface flow constructed wetland were discussed. A subsurface flow constructed wetland, which covered an area of 7 227 m^2 was finally designed. It could treat 7 000 m^3 of tailwater from the wastewater treatment plant a day. In addition, the system could reduce the emission of COD, BODs, TN, TP and NH3-N by 25.55, 25.55, 12.78, 1.28 and 17.89 t respectively a day. The outlet water was proved to reach the Standard A of the first class in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002).