The computational fluid dynamics (CFD) method is used to numerically simulate a propeller wake flow field in open water. A sub-domain hybrid mesh method was adopted in this paper. The computation domain was separate...The computational fluid dynamics (CFD) method is used to numerically simulate a propeller wake flow field in open water. A sub-domain hybrid mesh method was adopted in this paper. The computation domain was separated into two sub-domains, in which tetrahedral elements were used in the inner domain to match the complicated geometry of the propeller, while hexahedral elements were used in the outer domain. The mesh was locally refined on the propeller surface and near the wake flow field, and a size function was used to control the growth rate of the grid. Sections at different axial location were used to study the spatial evolution of the propeller wake in the region ranging from the disc to one propeller diameter (D) downstream. The numerical results show that the axial velocity fluctuates along the wake flow; radial velocity, which is closely related to vortices, attenuates strongly. The trailing vortices interact with the tip vortex at the blades' trailing edge and then separate. The strength of the vortex shrinks rapidly, and the radius decreases 20% at one diameter downstream.展开更多
The temperature difference of the submarine's wake on the sea surface is the base for the IR detection. In this paper, the temperature difference on the sea surface caused by the submarine's propellers and the...The temperature difference of the submarine's wake on the sea surface is the base for the IR detection. In this paper, the temperature difference on the sea surface caused by the submarine's propellers and the submarine's hull is studied by solving the three dimensional N-S equations. The results show that under the condition of sea temperature surroundings of minus gradient, such as in summer the upper water's temperature is higher than the lower water, it is cold wake on the sea surface and hot wake on the submarine's plane. The temperature difference between the wake and the water around in the wake's initial part becomes more and more obvious as the wake's distance gets longer. Through the IR camera, the submarine's propeller wake is studied under the same temperature status. Obvious IR temperature difference signals can be observed and it is consistent with the numerical simulation for the submarine.展开更多
基金Supported by Fundamental Research Funds for the Central Universities(Grant No.HEUCFT1001)Ph.D Programs Foundation of Ministry of Education of China(Grant No.10702016)
文摘The computational fluid dynamics (CFD) method is used to numerically simulate a propeller wake flow field in open water. A sub-domain hybrid mesh method was adopted in this paper. The computation domain was separated into two sub-domains, in which tetrahedral elements were used in the inner domain to match the complicated geometry of the propeller, while hexahedral elements were used in the outer domain. The mesh was locally refined on the propeller surface and near the wake flow field, and a size function was used to control the growth rate of the grid. Sections at different axial location were used to study the spatial evolution of the propeller wake in the region ranging from the disc to one propeller diameter (D) downstream. The numerical results show that the axial velocity fluctuates along the wake flow; radial velocity, which is closely related to vortices, attenuates strongly. The trailing vortices interact with the tip vortex at the blades' trailing edge and then separate. The strength of the vortex shrinks rapidly, and the radius decreases 20% at one diameter downstream.
基金Financially supported by the Fundamental Research Fund for the Central Universities(3132014039)China Postdoctoral Science Foundation
文摘The temperature difference of the submarine's wake on the sea surface is the base for the IR detection. In this paper, the temperature difference on the sea surface caused by the submarine's propellers and the submarine's hull is studied by solving the three dimensional N-S equations. The results show that under the condition of sea temperature surroundings of minus gradient, such as in summer the upper water's temperature is higher than the lower water, it is cold wake on the sea surface and hot wake on the submarine's plane. The temperature difference between the wake and the water around in the wake's initial part becomes more and more obvious as the wake's distance gets longer. Through the IR camera, the submarine's propeller wake is studied under the same temperature status. Obvious IR temperature difference signals can be observed and it is consistent with the numerical simulation for the submarine.