本文基于哈密顿原理,建立了一种柔性立管涡激振动(VIV)的三维有限元动力学模型。该模型考虑了管内流体的流动,而管外尾迹(wake)由一组沿立管变化的并与立管侧向加速度相耦合的范德波尔振子模型(van der Pol oscillator wake model)加以...本文基于哈密顿原理,建立了一种柔性立管涡激振动(VIV)的三维有限元动力学模型。该模型考虑了管内流体的流动,而管外尾迹(wake)由一组沿立管变化的并与立管侧向加速度相耦合的范德波尔振子模型(van der Pol oscillator wake model)加以模拟,水深以千米计。立管上端可以设置下入速度,可以随平台移动和摆动,下端则可以悬挂重物(如防喷器)和自由运动,也可以与水下井口连接。基于该模型,本文模拟了在一定的潮流、风流和波浪条件下,带或不带浮力块的隔水管下入过程中的动力学响应,重点讨论了悬挂重量、进入速度、入水深度对隔水管下端落点偏离、上端最大拉应力及全管最大弯曲应力的影响。本文处理的是一种典型的内外流固耦合振问题和复杂初边值问题,为后续有关研究提供了有效的计算分析工具。展开更多
WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be pr...WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be predicted, nonlinear items are added into the linear theory, and the old small angle assumption use d in matrix prediction is removed. All of these enha ncements are aimed at the low speed flight phase and formulations for the induce d velocity field just in the TTP frame are derived. The corresponding FORTRAN pr ogram is tested and optimized for the real time applications on PCs.展开更多
文摘本文基于哈密顿原理,建立了一种柔性立管涡激振动(VIV)的三维有限元动力学模型。该模型考虑了管内流体的流动,而管外尾迹(wake)由一组沿立管变化的并与立管侧向加速度相耦合的范德波尔振子模型(van der Pol oscillator wake model)加以模拟,水深以千米计。立管上端可以设置下入速度,可以随平台移动和摆动,下端则可以悬挂重物(如防喷器)和自由运动,也可以与水下井口连接。基于该模型,本文模拟了在一定的潮流、风流和波浪条件下,带或不带浮力块的隔水管下入过程中的动力学响应,重点讨论了悬挂重量、进入速度、入水深度对隔水管下端落点偏离、上端最大拉应力及全管最大弯曲应力的影响。本文处理的是一种典型的内外流固耦合振问题和复杂初边值问题,为后续有关研究提供了有效的计算分析工具。
文摘WT5 'BZThis paper presents an unsteady and nonlinear wake model based on th e widely used Peters He finite state dynamic wake model with improvements. The swirl component in the tip trace plane (TTP) can be predicted, nonlinear items are added into the linear theory, and the old small angle assumption use d in matrix prediction is removed. All of these enha ncements are aimed at the low speed flight phase and formulations for the induce d velocity field just in the TTP frame are derived. The corresponding FORTRAN pr ogram is tested and optimized for the real time applications on PCs.