[Objective] The study about the nitrogen releasing law of bamboo-charcoal coated urea and the biologic utilization effect was to find the coated urea with high efficiency,low price and simple production technology.[Me...[Objective] The study about the nitrogen releasing law of bamboo-charcoal coated urea and the biologic utilization effect was to find the coated urea with high efficiency,low price and simple production technology.[Method]Two kinds of bamboo-charcoal coated urea(BCCU)with different coating thickness were made by using bamboo-charcoal and macromolecule polymer as coating material.The experiments of soil eluviate,ammonia volatilization in corn field and potted plant of corn were conducted to study the nitrogen releasing law and the biologic utilization effect of self-made BCCU.[Result]The BCCU showed some slow-release capability and their accumulated nitrogen releasing rates in 29 d were 9.93%-16.27% lower than that of normal urea.Compared with the normal urea,the volatilization rate of ammonia in BCCU reduced to 16.66%-31.8%,the biomass of corn and nitrogen utilization rate increased by 12.8%-24.1% and 10.5%-16.99%,respectively.[Conclusion]Bamboo-charcoal in coated urea not only had some slow-release capability,but also had some adsorbability,which would reduce the eluviation and volatilization of nitrogen and protect environment from N pollution.展开更多
Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N ferti...Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha^-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha^-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha^-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.展开更多
1,3-disubstituted ureas of adamantine series are potent for hypertension and inflammatory treatment. The most valuable parameters of these compounds are melting point and solubility. Higher melting point leads to lowe...1,3-disubstituted ureas of adamantine series are potent for hypertension and inflammatory treatment. The most valuable parameters of these compounds are melting point and solubility. Higher melting point leads to lower bioavailability and for most of the compounds investigated before it was very high. Usage of isocyanates containing 1,3-dimethyladamantane fragment will significantly decrease the melting point, improve solubility and therefore improve bioavailability of 1,3-disubstituted ureas and other biologically active compounds produced on its base. This article presents new 1,3-disubstituted ureas and biureas synthesized by the authors.展开更多
The effectiveness of polyolefin-coated urea (Meister-5 and Meister-10; CU) in a wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system was studied in lysimeter plots located in the North China Plain fo...The effectiveness of polyolefin-coated urea (Meister-5 and Meister-10; CU) in a wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system was studied in lysimeter plots located in the North China Plain for three consecutive maizewheat-maize cropping seasons. An isotopic method was used to compare the fate of CU to that of non-coated urea (NCU), and N application rates of 0, 100, 150 and 225 kg N ha-1 were evaluated. The results showed that the nitrogen use efficiency (15NUE) of CU was 13.3%-21.4% greater than that of NCU for the first crop. Alternatively, when the difference method was applied (apparent NUE), no significant variations were observed among treatments in all three seasons. Although inorganic N leached from the 1.3 m layer was less than 1% of the total applied N, unidentified losses of 15N (losses of 15N = 15N applied as fertilizer - 15N absorbed by crops - 15N remaining in the 0-0.2 m layer - 15N leached from the 1.3 m layer) in CU-treated plots were 24.2%-26.5% lower than those of NCU-treated plots. The nitrate concentration in the 0-1.3 m layer of CU plots at the end of the experiment was 53% lower than that of NCU-treated plots. Thus, CU increased crop N uptake from fertilizer and reduced unidentified losses of applied N, which can reduce the risk of groundwater pollution.展开更多
基金Supported by the Special Foundation of"Guangxi NewCentury National Ten,Hundred and Thousand Talent Project"(2004217)the Sci-ence Foundation of Guangxi Province(Guikeji0575103)~~
文摘[Objective] The study about the nitrogen releasing law of bamboo-charcoal coated urea and the biologic utilization effect was to find the coated urea with high efficiency,low price and simple production technology.[Method]Two kinds of bamboo-charcoal coated urea(BCCU)with different coating thickness were made by using bamboo-charcoal and macromolecule polymer as coating material.The experiments of soil eluviate,ammonia volatilization in corn field and potted plant of corn were conducted to study the nitrogen releasing law and the biologic utilization effect of self-made BCCU.[Result]The BCCU showed some slow-release capability and their accumulated nitrogen releasing rates in 29 d were 9.93%-16.27% lower than that of normal urea.Compared with the normal urea,the volatilization rate of ammonia in BCCU reduced to 16.66%-31.8%,the biomass of corn and nitrogen utilization rate increased by 12.8%-24.1% and 10.5%-16.99%,respectively.[Conclusion]Bamboo-charcoal in coated urea not only had some slow-release capability,but also had some adsorbability,which would reduce the eluviation and volatilization of nitrogen and protect environment from N pollution.
基金Project supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX2-413-3)National Natural Science Foundation of China (No.30390080)National Basic Research Program of China (No.2005CB121108)
文摘Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha^-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha^-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha^-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice.
文摘1,3-disubstituted ureas of adamantine series are potent for hypertension and inflammatory treatment. The most valuable parameters of these compounds are melting point and solubility. Higher melting point leads to lower bioavailability and for most of the compounds investigated before it was very high. Usage of isocyanates containing 1,3-dimethyladamantane fragment will significantly decrease the melting point, improve solubility and therefore improve bioavailability of 1,3-disubstituted ureas and other biologically active compounds produced on its base. This article presents new 1,3-disubstituted ureas and biureas synthesized by the authors.
基金Supported by the National Basic Research Program (973 Program) of China (No. 2007CB109302)the Special Fund for Agro-Scientific Research in the Public Interest, China (No. 201103007)the Japan-China Co-operation Project
文摘The effectiveness of polyolefin-coated urea (Meister-5 and Meister-10; CU) in a wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system was studied in lysimeter plots located in the North China Plain for three consecutive maizewheat-maize cropping seasons. An isotopic method was used to compare the fate of CU to that of non-coated urea (NCU), and N application rates of 0, 100, 150 and 225 kg N ha-1 were evaluated. The results showed that the nitrogen use efficiency (15NUE) of CU was 13.3%-21.4% greater than that of NCU for the first crop. Alternatively, when the difference method was applied (apparent NUE), no significant variations were observed among treatments in all three seasons. Although inorganic N leached from the 1.3 m layer was less than 1% of the total applied N, unidentified losses of 15N (losses of 15N = 15N applied as fertilizer - 15N absorbed by crops - 15N remaining in the 0-0.2 m layer - 15N leached from the 1.3 m layer) in CU-treated plots were 24.2%-26.5% lower than those of NCU-treated plots. The nitrate concentration in the 0-1.3 m layer of CU plots at the end of the experiment was 53% lower than that of NCU-treated plots. Thus, CU increased crop N uptake from fertilizer and reduced unidentified losses of applied N, which can reduce the risk of groundwater pollution.