期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于Gabor特征融合与LBP直方图的人脸表情特征提取方法 被引量:25
1
作者 牛连强 赵子天 张胜男 《沈阳工业大学学报》 EI CAS 北大核心 2016年第1期63-68,共6页
针对Gabor特征全局表征能力弱以及特征数据维数存在冗余的问题,提出了一种采用Gabor多方向特征融合与分块直方图相结合的方法以有效提取表情特征.通过对不同表情的重要特征部位进行细化,采用Gabor滤波器有针对性地提取相关区域的多尺度... 针对Gabor特征全局表征能力弱以及特征数据维数存在冗余的问题,提出了一种采用Gabor多方向特征融合与分块直方图相结合的方法以有效提取表情特征.通过对不同表情的重要特征部位进行细化,采用Gabor滤波器有针对性地提取相关区域的多尺度和多方向特征,并对同尺度的特征进行融合,利用各区域内融合特征的直方图分布来表征图像.该方法可以提高特征提取的准确性,有效突出重要特征的辨识作用,大幅度降低特征的维数,在JAFFE表情库可以达到100%的识别率. 展开更多
关键词 表情识别 GABOR变换 特征融合 局部二进制模式 分块直方图 多尺度 多方向 维数
下载PDF
改进的基于谱直方图人脸图像特征提取方法
2
作者 肖明霞 《宁夏师范学院学报》 2009年第3期36-39,48,共5页
提出了一种基于谱直方图的人脸图像特征提取的方法.使用梯度滤波器、高斯-拉普拉斯滤波器和局域二值模式(LBP)构成的滤波器组来计算待测图像的谱直方图.仿真实验结果和分析表明,该算法具有较高的效率和准确性.
关键词 人脸特征提取 直方图 局域二值模式
下载PDF
基于多核学习特征融合的人脸表情识别 被引量:7
3
作者 钟志鹏 张立保 《计算机应用》 CSCD 北大核心 2015年第A02期245-249,共5页
传统的基于纹理特征的表情识别采用单一纹理特征构建单核支持向量机(SVM)进行表情特征分类,势必会造成表情特征信息的丢失,影响识别率;然而过多的特征又会带来冗余,产生过拟合现象,降低识别率。针对传统方法的不足,提出了基于多核学习... 传统的基于纹理特征的表情识别采用单一纹理特征构建单核支持向量机(SVM)进行表情特征分类,势必会造成表情特征信息的丢失,影响识别率;然而过多的特征又会带来冗余,产生过拟合现象,降低识别率。针对传统方法的不足,提出了基于多核学习特征融合的人脸表情识别方法,即提取图像的Gabor纹理特征、灰度直方图特征、LBP纹理特征三种特征并进行主成分分析(PCA)降维,在多核支持向量机训练中利用基于核函数组合的特征融合模型,寻找一组最优的特征组合系数,构建基于特征融合模型的核函数,进行表情的分类。该方法能更大限度利用表情图像中的有用特征,还能避免无关特征和冗余特征带来的过拟合现象。通过在学生听课表情表情库中的实验结果表明,方法的识别率为88%,好于传统方法 80%的识别率。 展开更多
关键词 支持向量机 多核学习特征融合 GABOR纹理特征 灰度直方图特征 局部二进制模式 主成分分析
下载PDF
基于点标定的行人检测准确度研究 被引量:1
4
作者 李昕昕 李新江 龚勋 《科学技术与工程》 北大核心 2017年第13期216-219,共4页
为了提高基于特征点的行人检测方法的检测准确度,提出了一种基于局部二值模式(local binary patterns,LBP)和二进制梯度方向直方图(binary histograms of oriented gradients,BHOG)特征组合和支持向量机分类器(support vector machine,S... 为了提高基于特征点的行人检测方法的检测准确度,提出了一种基于局部二值模式(local binary patterns,LBP)和二进制梯度方向直方图(binary histograms of oriented gradients,BHOG)特征组合和支持向量机分类器(support vector machine,SVM)的行人检测方法。实验结果显示,采用BHOG+LBP组合特征提取方式的错误检测率为0.012,相较于采用单一BHOG特征提取方式的错误检测率降低了33.33%,相较于采用单一LBP特征提取方式的错误检测率降低了40%。 展开更多
关键词 局部二值模式 二进制梯度方向直方图 支持向量机 组合特征 标点方式
下载PDF
一种玉米雄穗图像识别算法研究 被引量:1
5
作者 茅正冲 孙雅慧 《安徽农业科学》 CAS 2018年第13期193-195,236,共4页
针对复杂的玉米田间图像,提出了一种玉米雄穗识别算法。该算法在HOG/SVM算法的基础上进行改进,为了弥补HOG特征只表现图像的轮廓特征这一缺点,分别提取待测图像块的颜色特征、轮廓特征和纹理特征,并送入提出的组合级联SVM分类器中进行... 针对复杂的玉米田间图像,提出了一种玉米雄穗识别算法。该算法在HOG/SVM算法的基础上进行改进,为了弥补HOG特征只表现图像的轮廓特征这一缺点,分别提取待测图像块的颜色特征、轮廓特征和纹理特征,并送入提出的组合级联SVM分类器中进行判别。该SVM分类器是由2级SVM模型组合构成的,并使用大量经过人工标注的雄穗图像和背景图像为样本训练而成。综合考虑分割结果和性能评价,雄穗成功识别率为83%,该方法能很好地识别玉米雄穗,适用于复杂田间玉米雄穗图像的分割。 展开更多
关键词 图像识别 方向梯度直方图 局部二进制模式特征 支持向量机
下载PDF
形变冗余的改进GHT目标双层定位方法研究 被引量:2
6
作者 胡正平 高亚男 《中国图象图形学报》 CSCD 北大核心 2011年第1期50-58,共9页
经典广义Hough变换可以较好地解决非形变目标定位问题,但对于存在形变的目标定位问题存在不少困难。为解决该问题,同时考虑如何提高检测定位速度与减少存储消耗,在粗定位与精确定位两级框架下提出基于改进GHT形变目标两层定位快速算法... 经典广义Hough变换可以较好地解决非形变目标定位问题,但对于存在形变的目标定位问题存在不少困难。为解决该问题,同时考虑如何提高检测定位速度与减少存储消耗,在粗定位与精确定位两级框架下提出基于改进GHT形变目标两层定位快速算法。粗定位过程首先利用图像的局域二进制模式的直方图特征对图像进行全局搜索,检测出目标大致范围;在精确定位过程中,通过建立模板图像边缘像素的R表,使待检测图像边缘像素在约束的参数范围内依据该R表进行局部搜索,并通过一个投票结果散布窗对得到的累积矩阵进行集中化处理,达到把每一点邻域内投票结果集中在某点的目的,从而给出最后的检测结果。实验表明,本文算法能够较好的解决一定程度形变目标的定位问题,同时减少了运算时间以及存储消耗,检测稳定性高,具有一定应用意义。 展开更多
关键词 广义HOUGH变换 局域二进制模式直方图特征 目标定位 累积矩阵
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部