针对随机噪声干扰滚动轴承故障特征信号提取这一问题,提出一种基于奇异值分解(Singular value decomposition,SVD)滤波降噪与局域均值分解(Local mean decomposition,LMD)相结合的故障特征提取方法。该方法首先对原始振动信号在相空间重...针对随机噪声干扰滚动轴承故障特征信号提取这一问题,提出一种基于奇异值分解(Singular value decomposition,SVD)滤波降噪与局域均值分解(Local mean decomposition,LMD)相结合的故障特征提取方法。该方法首先对原始振动信号在相空间重构Hankel矩阵并利用SVD方法进行降噪处理,再对降噪后的信号进行LMD分解,将多分量的调制信号分解成一系列生产函数(Product function,PF)之和,最后结合共振解调技术对PF分量进行包络谱分析提取故障特征频率。通过数值仿真和实际轴承故障数据的分析对比,表明该方法提高了LMD的分解能力,可有效辨别出滚动轴承实测信号的典型故障,提高滚动轴承故障的诊断效果。展开更多
局域均值分解(Local mean decomposition,LMD)的主要思想是把一个时间序列的信号,分解成不同尺度的包络信号和纯调频信号,然后获得信号的时频分布。LMD算法用极值点来定义局部均值函数和局域包络函数,然后用滑动平均来平滑均值和包络函...局域均值分解(Local mean decomposition,LMD)的主要思想是把一个时间序列的信号,分解成不同尺度的包络信号和纯调频信号,然后获得信号的时频分布。LMD算法用极值点来定义局部均值函数和局域包络函数,然后用滑动平均来平滑均值和包络函数,针对用滑动平均平滑均值和包络函数误差较大的缺点,提出了采用三次样条对上、下极值点分别插值求得上下包络线,然后由上下包络线的平均获得局部平均函数,由上下包络线相减的绝对值获得局部包络的方法。通过对非线性和实例振动信号的实验研究表明,基于样条的LMD方法的分析精度比LMD方法高。展开更多
论述了局域均值分解(Local mean decomposition,LMD)的定义和算法。结合局域均值分解、包络分析和支持向量机(Support vector machine,SVM)的各自特点,提出了一种基于LMD包络谱和SVM的滚动轴承故障诊断方法,该方法先对滚动轴承振动信号...论述了局域均值分解(Local mean decomposition,LMD)的定义和算法。结合局域均值分解、包络分析和支持向量机(Support vector machine,SVM)的各自特点,提出了一种基于LMD包络谱和SVM的滚动轴承故障诊断方法,该方法先对滚动轴承振动信号进行分解,得到一系列的生产函数分量,然后,再对前面几个生产函数分量进行包络分析,从包络谱中提取特征幅值比作为特征向量输入到SVM分类器中进行识别。实验结果验证了提出的方法的有效性,可以有效地识别滚动轴承的不同故障。展开更多
结合局域均值分解(Local mean decomposition,LMD)和盲源分离各自的特点,提出一种基于局域均值分解的欠定盲源分离方法。该方法利用LMD对观测信号进行分解,得到一系列的生产函数分量,将所得到的生产函数(Production functions,PF)分量...结合局域均值分解(Local mean decomposition,LMD)和盲源分离各自的特点,提出一种基于局域均值分解的欠定盲源分离方法。该方法利用LMD对观测信号进行分解,得到一系列的生产函数分量,将所得到的生产函数(Production functions,PF)分量和原观测信号组成新的观测信号。对构成的新观测信号进行白化处理和联合近似对角化,得到源信号的估计。该方法能有效解决传统的盲源分离方法要求源信号满足非高斯、平稳和相互独立的假设,且要求观测信号数多于源数的不足等问题。仿真结果表明,所提出的方法是有效的,在处理非平稳信号混合的欠定盲分离方面,比传统时频域的盲源分离方法得到了更好的分离效果。将提出的方法应用到滚动轴承的混合故障分离中,试验结果进一步验证该方法的有效性。展开更多
结合局域均值分解(Local mean decomposition,LMD)方法和Wigner高阶矩谱,提出一种基于局域均值分解的Wigner高阶矩谱的机械故障诊断方法,该方法保留了LMD和Wigner高阶矩谱的所有优良性能,有效地抑制了Wigner高阶矩谱的交叉项的干扰。仿...结合局域均值分解(Local mean decomposition,LMD)方法和Wigner高阶矩谱,提出一种基于局域均值分解的Wigner高阶矩谱的机械故障诊断方法,该方法保留了LMD和Wigner高阶矩谱的所有优良性能,有效地抑制了Wigner高阶矩谱的交叉项的干扰。仿真结果表明,提出的方法优于直接Wigner高阶矩谱和Choi-Williams核滤波后的Wigner高阶矩谱。最后,将该方法应用到轴承故障诊断中,实验结果进一步验证了该方法的的有效性。展开更多
依据小波变换带通滤波特性和相关分析提出一种滚动轴承故障特征提取新方法。针对带通滤波器参数难以快速自适应选取的问题,提出利用局域均值分解(Local Mean Decomposition,LMD)所得乘积函数(Production Function,PF)的统计特征快速设...依据小波变换带通滤波特性和相关分析提出一种滚动轴承故障特征提取新方法。针对带通滤波器参数难以快速自适应选取的问题,提出利用局域均值分解(Local Mean Decomposition,LMD)所得乘积函数(Production Function,PF)的统计特征快速设定滤波器中心频率,通过分析滤波信号小波系数谱改进香农熵(Shannon熵)与滤波器带宽参数间的关系给出滤波器带宽参数优化策略。对仿真信号和内外圈故障轴承信号的分析结果表明,该方法能自适应优化小波滤波器参数,有效提取滚动轴承冲击性故障特征。展开更多
针对风速时间序列的非线性和非平稳性,提出一种基于局域均值分解(Local Mean Decomposition,LMD)和多核最小二乘支持向量机的短期风速预测模型。该方法首先对LMD对风速时间序列进行多层分解,得到一系列的PF(Product Function,PF)分量;...针对风速时间序列的非线性和非平稳性,提出一种基于局域均值分解(Local Mean Decomposition,LMD)和多核最小二乘支持向量机的短期风速预测模型。该方法首先对LMD对风速时间序列进行多层分解,得到一系列的PF(Product Function,PF)分量;然后运用多核最小二乘支持向量机模型对分解后的各PF分量风速进行预测;最后对各预测结果进行叠加作为最终的预测风速。算例结果表明,该预测模型能准确进行短期风速的预测。展开更多
文摘针对随机噪声干扰滚动轴承故障特征信号提取这一问题,提出一种基于奇异值分解(Singular value decomposition,SVD)滤波降噪与局域均值分解(Local mean decomposition,LMD)相结合的故障特征提取方法。该方法首先对原始振动信号在相空间重构Hankel矩阵并利用SVD方法进行降噪处理,再对降噪后的信号进行LMD分解,将多分量的调制信号分解成一系列生产函数(Product function,PF)之和,最后结合共振解调技术对PF分量进行包络谱分析提取故障特征频率。通过数值仿真和实际轴承故障数据的分析对比,表明该方法提高了LMD的分解能力,可有效辨别出滚动轴承实测信号的典型故障,提高滚动轴承故障的诊断效果。
文摘局域均值分解(Local mean decomposition,LMD)的主要思想是把一个时间序列的信号,分解成不同尺度的包络信号和纯调频信号,然后获得信号的时频分布。LMD算法用极值点来定义局部均值函数和局域包络函数,然后用滑动平均来平滑均值和包络函数,针对用滑动平均平滑均值和包络函数误差较大的缺点,提出了采用三次样条对上、下极值点分别插值求得上下包络线,然后由上下包络线的平均获得局部平均函数,由上下包络线相减的绝对值获得局部包络的方法。通过对非线性和实例振动信号的实验研究表明,基于样条的LMD方法的分析精度比LMD方法高。
文摘论述了局域均值分解(Local mean decomposition,LMD)的定义和算法。结合局域均值分解、包络分析和支持向量机(Support vector machine,SVM)的各自特点,提出了一种基于LMD包络谱和SVM的滚动轴承故障诊断方法,该方法先对滚动轴承振动信号进行分解,得到一系列的生产函数分量,然后,再对前面几个生产函数分量进行包络分析,从包络谱中提取特征幅值比作为特征向量输入到SVM分类器中进行识别。实验结果验证了提出的方法的有效性,可以有效地识别滚动轴承的不同故障。
文摘结合局域均值分解(Local mean decomposition,LMD)和盲源分离各自的特点,提出一种基于局域均值分解的欠定盲源分离方法。该方法利用LMD对观测信号进行分解,得到一系列的生产函数分量,将所得到的生产函数(Production functions,PF)分量和原观测信号组成新的观测信号。对构成的新观测信号进行白化处理和联合近似对角化,得到源信号的估计。该方法能有效解决传统的盲源分离方法要求源信号满足非高斯、平稳和相互独立的假设,且要求观测信号数多于源数的不足等问题。仿真结果表明,所提出的方法是有效的,在处理非平稳信号混合的欠定盲分离方面,比传统时频域的盲源分离方法得到了更好的分离效果。将提出的方法应用到滚动轴承的混合故障分离中,试验结果进一步验证该方法的有效性。
文摘结合局域均值分解(Local mean decomposition,LMD)方法和Wigner高阶矩谱,提出一种基于局域均值分解的Wigner高阶矩谱的机械故障诊断方法,该方法保留了LMD和Wigner高阶矩谱的所有优良性能,有效地抑制了Wigner高阶矩谱的交叉项的干扰。仿真结果表明,提出的方法优于直接Wigner高阶矩谱和Choi-Williams核滤波后的Wigner高阶矩谱。最后,将该方法应用到轴承故障诊断中,实验结果进一步验证了该方法的的有效性。
文摘依据小波变换带通滤波特性和相关分析提出一种滚动轴承故障特征提取新方法。针对带通滤波器参数难以快速自适应选取的问题,提出利用局域均值分解(Local Mean Decomposition,LMD)所得乘积函数(Production Function,PF)的统计特征快速设定滤波器中心频率,通过分析滤波信号小波系数谱改进香农熵(Shannon熵)与滤波器带宽参数间的关系给出滤波器带宽参数优化策略。对仿真信号和内外圈故障轴承信号的分析结果表明,该方法能自适应优化小波滤波器参数,有效提取滚动轴承冲击性故障特征。
文摘针对风速时间序列的非线性和非平稳性,提出一种基于局域均值分解(Local Mean Decomposition,LMD)和多核最小二乘支持向量机的短期风速预测模型。该方法首先对LMD对风速时间序列进行多层分解,得到一系列的PF(Product Function,PF)分量;然后运用多核最小二乘支持向量机模型对分解后的各PF分量风速进行预测;最后对各预测结果进行叠加作为最终的预测风速。算例结果表明,该预测模型能准确进行短期风速的预测。