We study a system consisting of two identical non-interacting single-mode cavity fields coupled to a common vacuum environment and provide general, explicit, and exact solutions to its master equation by means of the ...We study a system consisting of two identical non-interacting single-mode cavity fields coupled to a common vacuum environment and provide general, explicit, and exact solutions to its master equation by means of the characteristic function method. We analyze the entanglement dynamics of two-mode squeezed thermal state in this model and show that its entanglement dynamics is strongly determined by the two-mode squeezing parameter and the purity. In particular, we find that two-mode squeezed thermal state with the squeezing parameter r ≤ -(1/2) In √u is extremely fragile and almost does not survive in a common vacuum environment. We investigate the time evolution of nonlocality for two-mode squeezed thermal state in such an environment. It is found that the evolved state loses its nonlocality in the beginning of the evolution, but after a time, the revival of nonlocality can occur.展开更多
To accurately describe the evolving features of Mobile Ad Hoc Networks (MANETs) and to improve the performance of such networks, an evolving topology model with local-area preference is proposed. The aim of the model,...To accurately describe the evolving features of Mobile Ad Hoc Networks (MANETs) and to improve the performance of such networks, an evolving topology model with local-area preference is proposed. The aim of the model, which is analyzed by the mean field theory, is to optimize network structures based on users' behaviors in MANETs. The analysis results indicate that the network generated by this evolving model is a kind of scale-free network. This evolving model can improve the fault-tolerance performance of networks by balancing the connectivity and two factors, i.e., the remaining energy and the distance to nodes. The simulation results show that the evolving topology model has superior performance in reducing the traffic load and the energy consumption, prolonging network lifetime and improving the scalability of networks. It is an available approach for establishing and analyzing actual MANETs.展开更多
基金Supported by Hunan Provincial Natural Science Foundation of China under Grant No.10JJ6010the Key Project Foundation of Hunan Provincial Education Department of China under Grant No.10A095
文摘We study a system consisting of two identical non-interacting single-mode cavity fields coupled to a common vacuum environment and provide general, explicit, and exact solutions to its master equation by means of the characteristic function method. We analyze the entanglement dynamics of two-mode squeezed thermal state in this model and show that its entanglement dynamics is strongly determined by the two-mode squeezing parameter and the purity. In particular, we find that two-mode squeezed thermal state with the squeezing parameter r ≤ -(1/2) In √u is extremely fragile and almost does not survive in a common vacuum environment. We investigate the time evolution of nonlocality for two-mode squeezed thermal state in such an environment. It is found that the evolved state loses its nonlocality in the beginning of the evolution, but after a time, the revival of nonlocality can occur.
基金supported by National Science and Technology Major Project under Grant No. 2012ZX03004001the National Natural Science Foundation of China under Grant No. 60971083
文摘To accurately describe the evolving features of Mobile Ad Hoc Networks (MANETs) and to improve the performance of such networks, an evolving topology model with local-area preference is proposed. The aim of the model, which is analyzed by the mean field theory, is to optimize network structures based on users' behaviors in MANETs. The analysis results indicate that the network generated by this evolving model is a kind of scale-free network. This evolving model can improve the fault-tolerance performance of networks by balancing the connectivity and two factors, i.e., the remaining energy and the distance to nodes. The simulation results show that the evolving topology model has superior performance in reducing the traffic load and the energy consumption, prolonging network lifetime and improving the scalability of networks. It is an available approach for establishing and analyzing actual MANETs.